Downloads

https://doi.org/10.53941/see.2024.100007
Bai, X., Cao, Y., Zhu, B., Liu, R., Dong, J., & Yang, H. Enhancement of Photocatalytic Antimicrobial Performance via Generation and Diffusion of ROS. Science for Energy and Environment. 2024. doi: https://doi.org/10.53941/see.2024.100007

Review

Enhancement of Photocatalytic Antimicrobial Performance via Generation and Diffusion of ROS

Xiaojuan Bai 1,2,*, Yihan Cao 1, Bowen Zhu 1, Rujiao Liu 1, Jiaqian Dong 1, and Hua Yang 1

1 Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil
   Engineering and Architecture, Beijing 100044, China

2 Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction
   Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

* Correspondence: baixiaojuan@bucea.edu.cn

Received: 8 June 2024; Revised: 8 August 2024; Accepted: 20 August 2024; Published: 20 September 2024

Abstract: The increasing prevalence of antibiotic-resistant infections globally emphasizes the urgent need for effective antimicrobial strategies. Photocatalysts, known for their efficiency, broad-spectrum activity, and environmental benefits, present a promising alternative. With the development of natural solar light driven photocatalysts, the antimicrobial and bactericidal range has been further extended. Photocatalytic materials can be activated by various light wavelengths to generate reactive oxygen species (ROS), which can effectively eliminate a wide range of pathogenic microorganisms including bacteria, fungi, and protozoa. However, the limited optical response range, suboptimal bandgap, and slow electron cycling limit the efficient generation of ROS, resulting in lower sterilization efficiency of photocatalytic antimicrobials. Additionally, the short half-life and limited migration distance of ROS restrict their antimicrobial activity. This review focuses on the process and mechanism of ROS generation in photocatalytic reactions, and highlighting the recent advances in the typical photocatalysts. We also explore strategies to enhance ROS diffusion and utilization, including morphology control, noble metal deposition, doping, co-catalyst loading, vacancy introduction, surface functionalization, and heterojunction construction. These strategies aim to increase the efficiency of ROS generation and prolong their activity, thereby enhancing the overall antimicrobial effectiveness. Thereafter, the review presents state-of-the-art applications of photocatalysts in water purification, medical coatings, and air disinfection. Furthermore, it explores key challenges and opportunities that may drive future innovations and advancements in photocatalytic antimicrobial applications, aiming to develop more effective and sustainable solutions.

References

  1. Redman, C.L.; Jones, N.S. The environmental, social, and health dimensions of urban expansion. Popul. Environ. 2005, 26, 505–520.
  2. Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L.; Remais, J.V. Urbanisation and health in China. Lancet 2012, 379, 843–852.
  3. McMichael, A.J.; Beaglehole, R. The changing global context of public health. Lancet 2000, 356, 495–499.
  4. Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928.
  5. Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059.
  6. Singh, S.R.; Krishnamurthy, N.; Mathew, B.B. A review on recent diseases caused by microbes. J. Appl. Environ. Microbiol. 2014, 2, 106–115.
  7. Chen, P.; Guo, X.; Li, F. Antibiotic resistance genes in bioaerosols: Emerging, non-ignorable and pernicious pollutants. J. Clean. Prod. 2022, 348, 131094.
  8. Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435.
  9. Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705.
  10. Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.
  11. Ahmad, R.; Ahmad, Z.; Khan, A.U.; Mastoi, N.R.; Aslam, M.; Kim, J. Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications. J. Environ. Chem. Eng. 2016, 4, 4143–4164.
  12. Yemmireddy, V.K.; Hung, Y.C. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety—Opportunities and challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617–631.
  13. Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214.
  14. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
  15. Nolan, M.; Iwaszuk, A.; Lucid, A.K.; Carey, J.J.; Fronzi, M. Design of novel visible light active photocatalyst materials: Surface modified TiO2. Adv. Mater. 2016, 28, 5425–5446.
  16. Qiu, J.; Dai, D.; Yao, J. Tailoring metal–organic frameworks for photocatalytic H2O2 production. Coord. Chem. Rev. 2024, 501, 215597.
  17. Wang, Y.; Liu, M.; Fan, F.; Li, G.; Duan, J.; Li, Y.; Jiang, G.; Yao, W. Enhanced full-spectrum photocatalytic activity of 3D carbon-coated C3N4 nanowires via giant interfacial electric field. Appl. Catal. B Environ. 2022, 318, 121829.
  18. Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.
  19. Liu, J.; Ma, N.; Wu, W.; He, Q. Recent progress on photocatalytic heterostructures with full solar spectral responses. Chem. Eng. J. 2020, 393, 124719.
  20. Jiao, X.; Zheng, K.; Hu, Z.; Sun, Y.; Xie, Y. Broad-spectral-response photocatalysts for CO2 reduction. ACS Cent. Sci. 2020, 6, 653–660.
  21. Chen, X.; Cai, Y.; Liang, R.; Tao, Y.; Wang, W.; Zhao, J.; Chen, X.; Li, H.; Zhang, D.J. NH2-UiO-66 (Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis. Appl. Catal. B Environ. 2020, 267, 118687.
  22. Kipshidze, N.; Yeo, N.; Kipshidze, N. Photodynamic therapy for COVID-19. Nat. Photonics 2020, 14, 651–652.
  23. Constantino, D.S.M.; Dias, M.M.; Silva, A.M.T.; Faria, J.L.; Silva, C.G. Intensification strategies for improving the performance of photocatalytic processes: A review. J. Clean. Prod. 2022, 340, 130800.
  24. Zhang, C.; Li, Y.; Li, M.; Shuai, D.; Zhou, X.; Xiong, X.; Wang, C.; Hu, Q. Continuous photocatalysis via photo-charging and dark-discharging for sustainable environmental remediation: Performance, mechanism, and influencing factors. J. Hazard. Mater. 2021, 420, 126607.
  25. Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725.
  26. Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582.
  27. Nagarajan, S.; Skillen, N.C.; Fina, F.; Zhang, G.; Randorn, C.; Lawton, L.A.; Irvine, J.T.S.; Robertson, P.K.J. Comparative assessment of visible light and UV active photocatalysts by hydroxyl radical quantification. J. Photochem. Photobiol. A Chem. 2017, 334, 13–19.
  28. Salvador, P. Mechanisms of water photooxidation at n-TiO2 rutile single crystal oriented electrodes under UV illumination in competition with photocorrosion. Prog. Surf. Sci. 2011, 86, 41–58.
  29. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 2977–2992.
  30. Garcia-Diaz, M.; Huang, Y.-Y.; Hamblin, M.R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016, 109, 158–166.
  31. Sasikumar, D.; John, A.T.; Sunny, J.; Hariharan, M. Access to the triplet excited states of organic chromophores. Chem. Soc. Rev. 2020, 49, 6122–6140.
  32. Wang, H.; Jiang, S.; Chen, S.; Li, D.; Zhang, X.; Shao, W.; Sun, X.; Xie, J.; Zhao, Z.; Zhang, Q. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 2016, 28, 6940–6945.
  33. Yu, W.; Hu, C.; Bai, L.; Tian, N.; Zhang, Y.; Huang, H.J.N.E. Photocatalytic hydrogen peroxide evolution: What is the most effective strategy? Nano Energy 2022, 104, 107906.
  34. Ollis, D.F. Kinetics of photocatalyzed reactions: Five lessons learned. Front. Chem. 2018, 6, 378.
  35. Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
  36. Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.
  37. Li, B.; Wang, C.; Li, N.; Liu, T.; Wang, X. Hydrophobic microenvironment mediated photo-Fenton beads confining free radicals in vicinity of water-soluble contaminants for enhancing water purification. J. Clean. Prod. 2024, 434, 140135.
  38. Ma, H.-Y.; Zhao, L.; Guo, L.-H.; Zhang, H.; Chen, F.-J.; Yu, W.-C. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726.
  39. Yan, H.; Wang, R.; Liu, R.; Xu, T.; Sun, J.; Liu, L.; Wang, J. Recyclable and reusable direct Z-scheme heterojunction CeO2/TiO2 nanotube arrays for photocatalytic water disinfection. Appl. Catal. B Environ. 2021, 291, 120096.
  40. Wang, M.; Xu, Z.; Qi, Z.; Cai, Y.; Li, G.; Choi, W.; An, T. Repeated photocatalytic inactivation of E. coli by UV + Ni foam@TiO2: Performance and photocatalyst deactivation. Chem. Eng. J. 2023, 468, 143680.
  41. Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148.
  42. Dhiman, P.; Rana, G.; Kumar, A.; Sharma, G.; Vo, D.-V.N.; Naushad, M. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: A review. Environ. Chem. Lett. 2022, 20, 1047–1081.
  43. Van Dang, H.; Wang, Y.H.; Wu, J.C.S. Z-scheme photocatalyst Pt/GaP-TiO2-SiO2: Rh for the separated H2 evolution from photocatalytic seawater splitting. Appl. Catal. B Environ. 2021, 296, 120339.
  44. He, J.; Cheng, J.; Lo, I.M.C. Green photocatalytic disinfection of real sewage: Efficiency evaluation and toxicity assessment of eco-friendly TiO2-based magnetic photocatalyst under solar light. Water Res. 2021, 190, 116705.
  45. Huang, J.; Dou, L.; Li, J.; Zhong, J.; Li, M.; Wang, T. Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants. J. Hazard. Mater. 2021, 403, 123857.
  46. Xiao, B.; Shen, C.; Luo, Z.; Li, D.; Kuang, X.; Wang, D.; Zi, B.; Yan, R.; Lv, T.; Zhou, T.; Zhang, J.; Liu, Q. Cu surface doped TiO2: Constructing Cu single-atoms active sites and broadening the photo-response range for efficient photocatalytic hydrogen production. Chem. Eng. J. 2023, 468, 143650.
  47. Chen, Y.; Wang, X.; Zeng, Z.; Lv, M.; Wang, K.; Wang, H.; Tang, X. Towards molecular understanding of surface and interface catalytic engineering in TiO2/TiOF2 nanosheets photocatalytic antibacterial under visible light irradiation. J. Hazard. Mater. 2024, 465, 133429.
  48. Du, M.; Zhao, W.; Ma, R.; Xu, H.; Zhu, Y.; Shan, C.; Liu, K.; Zhuang, J.; Jiao, Z. Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. J. Hazard. Mater. 2021, 418, 126013.
  49. Zhu, Z.; Bao, L.; Pestov, D.; Xu, P.; Wang, W.-N. Cellular-level insight into biointerface: From surface charge modulation to boosted photocatalytic oxidative disinfection. Chem. Eng. J. 2023, 453, 139956.
  50. Wang, C.; Liu, D.; Lin, W. Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. J. Am. Chem. Soc. 2013, 135, 13222–13234.
  51. Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K.W.K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B Environ. Energy 2020, 261, 118248.
  52. Yilmaz, G.; Peh, S.B.; Zhao, D.; Ho, G.W. Atomic‐and Molecular‐Level Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Adv. Sci. 2019, 6, 1901129.
  53. Chen, M.; Zhang, J.; Qi, J.; Dong, R.; Liu, H.; Wu, D.; Shao, H.; Jiang, X. Boronic Acid-Decorated Multivariate Photosensitive Metal–Organic Frameworks for Combating Multi-Drug-Resistant Bacteria. ACS Nano 2022, 16, 7732–7744.
  54. Gogotsi, Y.; Huang, Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15, 5775–5780.
  55. Liu, Z.; Gao, W.; Liu, L.; Luo, S.; Zhang, C.; Yue, T.; Sun, J.; Zhu, M.; Wang, J. Work function mediated interface charge kinetics for boosting photocatalytic water sterilization. J. Hazard. Mater. 2023, 442, 130036.
  56. Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B Environ. 2010, 99, 398–406.
  57. Lofrano, G.; Ubaldi, F.; Albarano, L.; Carotenuto, M.; Vaiano, V.; Valeriani, F.; Libralato, G.; Gianfranceschi, G.; Fratoddi, I.; Meric, S. Antimicrobial effectiveness of innovative photocatalysts: A review. Nanomaterials 2022, 12, 2831.
  58. Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S.C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Appl. Catal. B Environ. 2018, 225, 51–75.
  59. Sapińska, D.; Adamek, E.; Masternak, E.; Zielińska-Danch, W.; Baran, W. Influence of pH on the Kinetics and Products of Photocatalytic Degradation of Sulfonamides in Aqueous Solutions. Toxics 2022, 10, 655.
  60. Schwegmann, H.; Ruppert, J.; Frimmel, F.H. Influence of the pH-value on the photocatalytic disinfection of bacteria with TiO2 –Explanation by DLVO and XDLVO theory. Water Res. 2013, 47, 1503–1511.
  61. Meng, F.; Liu, Y.; Wang, J.; Tan, X.; Sun, H.; Liu, S.; Wang, S. Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: Differences in photoactive mechanism. J. Colloid Interface Sci. 2018, 532, 321–330.
  62. Chen, Y.-W.; Hsu, Y.-H. Effects of Reaction Temperature on the Photocatalytic Activity of TiO2 with Pd and Cu Cocatalysts. Catalysts 2021, 11, 966.
  63. Desiati, R.D.; Taspika, M.; Sugiarti, E. Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite. Mater. Res. Express 2019, 6, 095059.
  64. Luan, J.; Shen, Y.; Zhang, L.; Guo, N. Property characterization and photocatalytic activity evaluation of BiGdO3 nanoparticles under visible light irradiation. Int. J. Mol. Sci. 2016, 17, 1441.
  65. Cai, Y.; Stromme, M.; Welch, K. Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation. PLoS ONE 2013, 8, e75929.
  66. Yemmireddy, V.K.; Hung, Y.C. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2). Int. J. Food Microbiol. 2015, 204, 75–80.
  67. Ng, A.M.; Chan, C.M.; Guo, M.Y.; Leung, Y.H.; Djurisic, A.B.; Hu, X.; Chan, W.K.; Leung, F.C.; Tong, S.Y. Antibacterial and photocatalytic activity of TiO2 and ZnO nanomaterials in phosphate buffer and saline solution. Appl. Microbiol. Biotechnol. 2013, 97, 5565–5573.
  68. Podporska-Carroll, J.; Myles, A.; Quilty, B.; McCormack, D.E.; Fagan, R.; Hinder, S.J.; Dionysiou, D.D.; Pillai, S.C. Antibacterial properties of F-doped ZnO visible light photocatalyst. J. Hazard. Mater. 2017, 324, 39–47.
  69. He, W.; Kim, H.-K.; Wamer, W.G.; Melka, D.; Callahan, J.H.; Yin, J.-J. Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au Hybrid Nanostructures with Enhanced Photocatalytic and Antibacterial Activity. J. Am. Chem. Soc. 2014, 136, 750–757.
  70. Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275.
  71. Jin, Y.; Long, J.; Ma, X.; Zhou, T.; Zhang, Z.; Lin, H.; Long, J.; Wang, X. Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties. Appl. Catal. B Environ. 2019, 256, 117873.
  72. Shi, H.; Fan, J.; Zhao, Y.; Hu, X.; Zhang, X.; Tang, Z. Visible light driven CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E. coli and mechanism insight. J. Hazard. Mater. 2020, 381, 121006.
  73. Jin, C.; Rao, S.; Xie, J.; Sun, Z.; Gao, J.; Li, Y.; Li, B.; Liu, S.; Liu, L.; Liu, Q.; Yang, J. Enhanced photocatalytic antibacterial performance by hierarchical TiO2/W18O49 Z-scheme heterojunction with Ti3C2Tx-MXene cocatalyst. Chem. Eng. J. 2022, 447, 137369.
  74. Guo, J.; Zhou, J.; Sun, Z.; Wang, M.; Zou, X.; Mao, H.; Yan, F. Enhanced photocatalytic and antibacterial activity of acridinium-grafted g-C3N4 with broad-spectrum light absorption for antimicrobial photocatalytic therapy. Acta Biomater. 2022, 146, 370–384.
  75. Wang, R.; Wu, Z.; Chen, X.; Cheng, B.; Ou, W. Water purification using a BiVO4/graphene oxide multifunctional hydrogel based on interfacial adsorption-enrichment and photocatalytic antibacterial activity. Ceram. Int. 2023, 49, 9657–9671.
  76. Izuma, D.S.; Suzuki, N.; Suzuki, T.; Motomura, H.; Ando, S.; Fujishima, A.; Teshima, K.; Terashima, C. A Floatable and Highly Water-Durable TiO2-Coated Net for Photocatalytic Antibacterial Water Treatment in Developing Countries. Water 2023, 15, 320.
  77. Yang, H.; He, D.; Liu, C.; Zhou, X.; Qu, J. Magnetic photocatalytic antimicrobial materials for water disinfection. Sep. Purif. Technol. 2023, 325, 124697.
  78. Kumaravel, V.; Nair, K.M.; Mathew, S.; Bartlett, J.; Kennedy, J.E.; Manning, H.G.; Whelan, B.J.; Leyland, N.S.; Pillai, S.C. Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chem. Eng. J. 2021, 416, 129071.
  79. Yao, Y.; Ochiai, T.; Ishiguro, H.; Nakano, R.; Kubota, Y. Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Appl. Catal. B Environ. 2011, 106, 592–599.
  80. Ubaldi, F.; Valeriani, F.; Volpini, V.; Lofrano, G.; Romano Spica, V. Antimicrobial Activity of Photocatalytic Coatings on Surfaces: A Systematic Review and Meta-Analysis. Coatings 2024, 14, 92.
  81. Qiu, H.; Si, Z.; Luo, Y.; Feng, P.; Wu, X.; Hou, W.; Zhu, Y.; Chan-Park, M.B.; Xu, L.; Huang, D. The mechanisms and the applications of antibacterial polymers in surface modification on medical devices. Front. Bioeng. Biotechnol. 2020, 8, 910.
  82. Zhou, M.; Ou, H.; Li, S.; Qin, X.; Fang, Y.; Lee, S.; Wang, X.; Ho, W. Photocatalytic air purification using functional polymeric carbon nitrides. Adv. Sci. 2021, 8, 2102376.
  83. Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.
  84. Li, J.; Dong, X.; Sun, Y.; Jiang, G.; Chu, Y.; Lee, S.C.; Dong, F. Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Appl. Catal. B Environ. 2018, 239, 187–195.
  85. Zhang, J.; Wu, H.; Shi, L.; Wu, Z.; Zhang, S.; Wang, S.; Sun, H. Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Sep. Purif. Technol. 2024, 329, 125225.
  86. Zhang, J.; Chen, H.; Duan, X.; Sun, H.; Wang, S. Photothermal catalysis: From fundamentals to practical applications. Mater. Today 2023, 68, 234–253.
  87. He, F.; Chen, H.; Li, J.; Zhao, C.; Zhang, J.; Wang, S. Photothermal-mediated advanced oxidation processes for wastewater purification. Curr. Opin. Chem. Eng. 2024, 45, 101039.
  88. He, F.; Lu, Y.; Wu, Y.; Wang, S.; Zhang, Y.; Dong, P.; Wang, Y.; Zhao, C.; Wang, S.; Zhang, J.; Wang, S. Rejoint of Carbon Nitride Fragments into Multi-Interfacial Order-Disorder Homojunction for Robust Photo-Driven Generation of H2O2. Adv. Mater. 2024, 36, e2307490.