Downloads

https://doi.org/10.53941/see.2024.100006
Sun, Q., Wang, Y., Cao, Q., Hu, H., Zheng, M., Xiao, Y., Liu, Y., & Liang, Y. A Review of Self-Healing Polymers for Lithium Batteries: from Mechanistic Insight to Application. Science for Energy and Environment. 2024. doi: https://doi.org/10.53941/see.2024.100006

Review

A Review of Self-Healing Polymers for Lithium Batteries: From Mechanistic Insight to Application

Qiyue Sun, Yongyin Wang, Qiaoying Cao *, Hang Hu, Mingtao Zheng, Yong Xiao, Yingliang Liu and Yeru Liang *

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

* Correspondence: caoqy@scau.edu.cn (Q.C.); liangyr@scau.edu.cn (Y.L.)

Received: 11 May 2024; Revised: 19 June 2024; Accepted: 22 July 2024; Published: 14 August 2024

 

Abstract: Lithium batteries are crucial for powering portable electronic devices and electric vehicles, profoundly impacting our global society. However, their repeated charge and discharge cycles cause structural changes that lead to mechanical fractures in the internal components, significantly reducing cycling lifetimes of lithium batteries. Utilizing intrinsic self-healing polymers is a promising strategy to address these issues, as these materials can spontaneously repair mechanical cracks or damages, resulting in greatly enhanced electrochemical performance. In this review, we present and highlight how self-healing polymers contribute to improved electrochemical performance in lithium batteries. We first introduce the self-healing mechanisms identified in current self-healing functions, including external and intrinsic self-healing. Then, we discuss their effects on different electrolyte and binder materials. Key examples illustrating the efficacy of self-healing polymers in extending cycle life and improving battery stability are discussed. Finally, we propose some challenges and future opportunities in this evolving field to stimulate the rational design of advanced self-healing polymers for stable lithium batteries.

Keywords:

lithium batteries self-healing polymers mechanisms electrolyte binder

References

  1. Kulova, T.L.; Fateev, V.N.; Seregina, E.A.; Grigoriev, A.S. A Brief Review of Post-Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2020, 15 (8), 7242–7259.
  2. Xiao, J.; Li, Q.; Bi, Y.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B.; et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5 (8), 561–568.
  3. Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. : Mater. Int. 2018, 28 (6), 653–666.
  4. Lei, Z.; Zhang, Y.; Lei, X. Temperature uniformity of a heated lithium-ion battery cell in cold climate. Appl. Therm. Eng. 2018, 129, 148–154.
  5. Zhao, R.; Zhang, S.; Liu, J.; Gu, J. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system. J. Power Sources 2015, 299, 557–577.
  6. Ohzuku, T.; Brodd, R.J. An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 2007, 174 (2), 449–456.
  7. Yu, Z.; Gao, T.; Le, T.; Wang, W.; Wang, L.; Yang, Y. A homemade self-healing material utilized as multi-functional binder for long-lifespan lithium–sulfur batteries. J. Mater. Sci. : Mater. Electron. 2019, 30 (6), 5536–5543.
  8. Jiao, X.; Yin, J.; Xu, X.; Wang, J.; Liu, Y.; Xiong, S.; Zhang, Q.; Song, J. Highly Energy‐Dissipative, Fast Self‐Healing Binder for Stable Si Anode in Lithium‐Ion Batteries. Adv. Funct. Mater. 2020, 31 (3), 2005699.
  9. Wu, S.; Di, F.; Zheng, J.-g.; Zhao, H.-w.; Zhang, H.; Li, L.-x.; Geng, X.; Sun, C.-g.; Yang, H.-m.; Zhou, W.-m.; et al. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries. New Carbon Mater. 2022, 37 (5), 802–826.
  10. Kwon, T. w.; Jeong, Y.K.; Lee, I.; Kim, T.S.; Choi, J.W.; Coskun, A. Systematic Molecular‐Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries. Adv. Mater. 2014, 26 (47), 7979–7985.
  11. Li, J.; Liu, S.; Cui, Y.; Zhang, S.; Wu, X.; Xiang, J.; Li, M.; Wang, X.; Xia, X.; Gu, C.; et al. Potassium Hexafluorophosphate Additive Enables Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12 (50), 56017–56026.
  12. Liu, M.; Chen, P.; Pan, X.; Pan, S.; Zhang, X.; Zhou, Y.; Bi, M.; Sun, J.; Yang, S.; Vasiliev, A.L.; et al. Synergism of Flame‐Retardant, Self‐Healing, High‐Conductive and Polar to a Multi‐Functional Binder for Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32 (36), 2205031.
  13. Ren, D.S.; Xie, L.Q.; Wang, L.; He, X.M. A practical approach to predict volume deformation of lithium-ion batteries from crystal structure changes of electrode materials. Int. J. Energy Res. 2021, 45 (5), 7732–7740.
  14. Shimizu, M.; Yamanaka, R.; Teranishi, T.; Wang, J.; Sakai, K.; Tsukada, K.; Kiwa, T. Development of impedance measurement of lithium ion batteries electrode using terahertz chemical microscope. Electr. Eng. Jpn. 2021, 214 (4), e23355.
  15. Nagahama, K.; Aoyama, S.; Ueda, N.; Kimura, Y.; Katayama, T.; Ono, K. Biological Tissue-Inspired Living Self-Healing Hydrogels Based on Cadherin-Mediated Specific Cell–Cell Adhesion. ACS Macro Lett. 2021, 10 (8), 1073–1079.
  16. Peng, Y.; Liu, H.; Peng, H.; Zhang, J. Biological self-healing strategies from mechanically robust heterophasic liquid metals. Matter 2023, 6 (1), 226–238.
  17. Wang, W.; Zeng, Z.; Xiang, L.; Liu, C.; Diaz-Dussan, D.; Du, Z.; Asha, A.B.; Yang, W.; Peng, Y.-Y.; Pan, M.; et al. Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS Nano 2021, 15 (6), 9913–9923.
  18. Yao, Y.; Qu, X.; Zhou, L.; Liu, Y.; Hong, Z.; Wu, Y.; Huang, Z.; Hu, J.; Gao, M.; Pan, H. Rational Design of Robust and Universal Aqueous Binders to Enable Highly Stable Cyclability of High‐Capacity Conversion and Alloy‐Type Anodes. Energy Environ. Mater. 2023, 6 (5), e12429.
  19. Gavel, P.K.; Dev, D.; Parmar, H.S.; Bhasin, S.; Das, A.K. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl. Mater. Interfaces 2018, 10 (13), 10729–10740.
  20. Zheng, R.; Wang, Y.; Jia, C.; Wan, Z.; Luo, J.; Malik, H.A.; Weng, X.; Xie, J.; Deng, L. Intelligent Biomimetic Chameleon Skin with Excellent Self-Healing and Electrochromic Properties. ACS Appl. Mater. Interfaces 2018, 10 (41), 35533–35538.
  21. Zhong, J.-H.; Zhou, Y.; Tian, X.-X.; Sun, Y.-L.; Shi, B.-R.; Zhang, Z.-Y.; Zhang, W.-H.; Liu, X.-D.; Yang, Y.-M. The Addition of an Ultra-Small Amount of Black Phosphorous Quantum Dots Endow Self-Healing Polyurethane with a Biomimetic Intelligent Response. Macromol. Rapid Commun. 2023, 44 (19), 2300286.
  22. Liu, Z.; Zhang, L.; Guan, Q.; Guo, Y.; Lou, J.; Lei, D.; Wang, S.; Chen, S.; Sun, L.; Xuan, H.; et al. Biomimetic Materials with Multiple Protective Functionalities. Adv. Funct. Mater. 2019, 29 (28), 1901058.
  23. Wang, Y.; Guo, Q.; Su, G.; Cao, J.; Liu, J.; Zhang, X. Hierarchically Structured Self-Healing Actuators with Superfast Light- and Magnetic-Response. Adv. Funct. Mater. 2019, 29 (50), 1906198.
  24. Liu, Y.; Lin, S.-H.; Chuang, W.-T.; Dai, N.-T.; Hsu, S.-h. Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels. ACS Appl. Mater. Interfaces 2022, 14 (14), 16032–16046.
  25. Song, Y.; Liu, Y.; Qi, T.; Li, G.L. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angew. Chem. Int. Ed. 2018, 57 (42), 13838–13842.
  26. Je, P.C.; Sultan, M.T.H.; Selvan, C.P.; Irulappasamy, S.; Mustapha, F.; Basri, A.A.; Safri, S.N.A. Manufacturing challenges in self-healing technology for polymer composites—A review. J. Mater. Res. Technol. 2020, 9 (4), 7370–7379.
  27. Prajer, M.; Wu, X.; Garcia, S.J.; van der Zwaag, S. Direct and indirect observation of multiple local healing events in successively loaded fibre reinforced polymer model composites using healing agent-filled compartmented fibres. Compos. Sci. Technol. 2015, 106, 127–133.
  28. Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383.
  29. Coope, T.S.; Wass, D.F.; Trask, R.S.; Bond, I.P. Repeated self-healing of microvascular carbon fibre reinforced polymer composites. Smart Mater. Struct. 2014, 23 (11), 115002.
  30. Mu, P.; Zhang, H.; Dong, T.; Jiang, H.; Zhang, S.; Wang, C.; Li, J.; Dong, S.; Cui, G. A melatonin-inspired coating as an electrolyte preservative for layered oxide cathode-based lithium batteries. Chem. Eng. J. 2022, 437, 135032.
  31. Xie, C.; Yang, R.; Liu, F.; Hu, T.; Zhao, H. Simulation Study on Stress-Strain and Deformation of Separator Under Battery Temperature Field. J. Electrochem. Soc. 2023, 170 (10), 100530.
  32. Ferg, E.E.; Schuldt, F.; Schmidt, J. The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. J. Power Sources 2019, 423, 380–403.
  33. Fu, Y.; Lu, S.; Shi, L.; Cheng, X.; Zhang, H. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy 2018, 161, 38–45.
  34. Zhao, J.; Wei, D.; Wang, J.; Yang, K.; Wang, Z.; Chen, Z.; Zhang, S.; Zhang, C.; Yang, X. Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries. J. Colloid Interface Sci. 2022, 625, 373–382.
  35. Lopez, J.; Chen, Z.; Wang, C.; Andrews, S.C.; Cui, Y.; Bao, Z. The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. ACS Appl. Mater. Interfaces 2016, 8 (3), 2318–2324.
  36. Munaoka, T.; Yan, X.; Lopez, J.; To, J.W.F.; Park, J.; Tok, J.B.-H.; Cui, Y.; Bao, Z. Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries. Adv. Energy Mater. 2018, 8 (14), 1703138.
  37. Shojaei, A.; Sharafi, S.; Li, G. A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect. Mech. Mater. 2015, 81, 25–40.
  38. Wang, W.; Zuo, F.; Li, Y. Research on Influencing Factors About Temperature of Short Circuit Area in Lithium-Ion Power Battery. J. Electrochem. Energy Convers. Storage 2021, 18 (2), 020910.
  39. Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 2010, 40, 179–211.
  40. Thangavel, G.; Tan, M.W.M.; Lee, P.S. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg. 2019, 6 (1), 29.
  41. Hu, R.; Zhao, J.; Wang, Y.; Li, Z.; Zheng, J. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334–341.
  42. Magaletti, R.; Pizzetti, F.; Masi, M.; Rossi, F. Biobased Materials as Promising Tools for the Slow-Release of Urea. ACS Agric. Sci. Technol. 2023, 3 (11), 957–969.
  43. Yan, H.; Xu, X.; Fu, B.; Fan, X.; Kan, Y.; Yao, X. Constitutive model and damage of self-healing 3D braided composites with microcapsules. Compos. Commun. 2023, 40, 101586.
  44. Hao, W.; Hao, H.; Kanwal, H.; Jiang, S. Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission. J. Renew. Mater. 2023, 11 (4), 1687–1697.
  45. Ji, Z.; Wang, H.; Chen, Z.; Wang, P.; Liu, J.; Wang, J.; Hu, M.; Fei, J.; Nie, N.; Huang, Y. A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Mater. 2020, 28, 334–341.
  46. Xu, J.; Ding, C.; Chen, P.; Tan, L.; Chen, C.; Fu, J. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Appl. Phys. Rev. 2020, 7 (3), 031304.
  47. Cheng, Y.; Wang, C.; Kang, F.; He, Y.-B. Self-Healable Lithium-Ion Batteries: A Review. Nanomaterials 2022, 12 (20), 3656.
  48. Liao, H.; Zhong, W.; Li, T.; Han, J.; Sun, X.; Tong, X.; Zhang, Y. A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim. Acta 2022, 404, 105907.
  49. Ezeigwe, E.R.; Dong, L.; Manjunatha, R.; Tan, M.; Yan, W.; Zhang, J. A review of self-healing electrode and electrolyte materials and their mitigating degradation of Lithium batteries. Nano Energy 2021, 84, 105907.
  50. Gao, X.; Su, J.-F.; Wang, S.; Yang, P. Smart Self-Nourishing and Self-Healing Artificial Skin Composite Using Bionic Microvascular Containing Liquid Agent. Polymers 2022, 14 (19), 3941.
  51. Yang, P.; Wang, L.-Q.; Gao, X.; Wang, S.; Su, J.-F. Smart Self-Healing Capability of Asphalt Material Using Bionic Microvascular Containing Oily Rejuvenator. Materials 2021, 14 (21), 6431.
  52. Kato, Y.; Minakuchi, S.; Ogihara, S.; Takeda, N. Self-healing composites structure using multiple through-thickness microvascular channels. Adv. Compos. Mater. 2021, 30 (sup1), 1–18.
  53. Caruso, M.M.; Blaiszik, B.J.; White, S.R.; Sottos, N.R.; Moore, J.S. Full Recovery of Fracture Toughness Using a Nontoxic Solvent-Based Self-Healing System. Adv. Funct. Mater. 2008, 18 (13), 1898–1904.
  54. Lin, C.; Yuan, L.; Gu, A.; Liang, G.; Wu, J. High performance self-healing bismaleimide/diallylbisphenol a/poly(phenylene oxide) microcapsules composites with low temperature processability. Polym. Compos. 2013, 34 (3), 335–342.
  55. Yuan, L.; Huang, S.; Gu, A.; Liang, G.; Chen, F.; Hu, Y.; Nutt, S. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Compos. Sci. Technol. 2013, 87, 111–117.
  56. Majchrzak, M.; Hine, P.J.; Khosravi, E. An autonomous self-healing system based on ROMP of norbornene dicarboximide monomers. Polymer 2012, 53 (23), 5251–5257.
  57. Yin, T.; Rong, M.Z.; Zhang, M.Q.; Yang, G.C. Self-healing epoxy composites – Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos. Sci. Technol. 2007, 67 (2), 201–212.
  58. Rule, J.D.; Brown, E.N.; Sottos, N.R.; White, S.R.; Moore, J.S. Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials. Adv. Mater. 2005, 17 (2), 205–208.
  59. Liu, X.; Sheng, X.; Lee, J.K.; Kessler, M.R. Synthesis and Characterization of Melamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents. Macromol. Mater. Eng. 2009, 294 (6–7), 389–395.
  60. Cho, S.H.; Andersson, H.M.; White, S.R.; Sottos, N.R.; Braun, P.V. Polydimethylsiloxane-Based Self-Healing Materials. Adv. Mater. 2006, 18 (8), 997–1000.
  61. Xiao, D.S.; Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. A Facile Strategy for Preparing Self-Healing Polymer Composites by Incorporation of Cationic Catalyst-Loaded Vegetable Fibers. Adv. Funct. Mater. 2009, 19 (14), 2289–2296.
  62. Cho, S.H.; White, S.R.; Braun, P.V. Self-Healing Polymer Coatings. Adv. Mater. 2009, 21 (6), 645–649.
  63. Keller, M.W.; White, S.R.; Sottos, N.R. A Self-Healing Poly(Dimethyl Siloxane) Elastomer. Adv. Funct. Mater. 2007, 17 (14), 2399–2404.
  64. Wilson, G.O.; Henderson, J.W.; Caruso, M.M.; Blaiszik, B.J.; McIntire, P.J.; Sottos, N.R.; White, S.R.; Moore, J.S. Evaluation of peroxide initiators for radical polymerization-based self-healing applications. J. Polym. Sci. Part A: Polym. Chem. 2010, 48 (12), 2698–2708.
  65. Li, Q.; Siddaramaiah; Kim, N.H.; Hui, D.; Lee, J.H. Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy. Compos. Part B: Eng. 2013, 55, 79–85.
  66. Jin, H.; Mangun, C.L.; Stradley, D.S.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 2012, 53 (2), 581–587.
  67. Zhang, H.; Wang, P.; Yang, J. Self-healing epoxy via epoxy–amine chemistry in dual hollow glass bubbles. Compos. Sci. Technol. 2014, 94, 23–29.
  68. Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q.; Chen, J.; Yang, G.C.; Li, X.M. Self-Healing Polymeric Materials Using Epoxy/Mercaptan as the Healant. Macromolecules 2008, 41 (14), 5197–5202.
  69. Gragert, M.; Schunack, M.; Binder, W.H. Azide/Alkyne-“Click”-Reactions of Encapsulated Reagents: Toward Self-Healing Materials. Macromol. Rapid Commun. 2011, 32 (5), 419–425.
  70. Rule, J.D.; Sottos, N.R.; White, S.R. Effect of microcapsule size on the performance of self-healing polymers. Polymer 2007, 48 (12), 3520–3529.
  71. Dry, C. Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 1996, 35 (3), 263–269.
  72. Bekas, D.G.; Baltzis, D.; Paipetis, A.S. Nano-reinforced polymeric healing agents for vascular self-repairing composites. Mater. Des. 2017, 116, 538–544.
  73. Xue, C.; Li, W.; Li, J.; Tam, V.W.Y.; Ye, G. A review study on encapsulation-based self-healing for cementitious materials. Struct. Concr. 2019, 20 (1), 198–212.
  74. Huang, Z.X.; Xie, Z.H.; Zhang, Z.P.; Zhang, T.; Rong, M.Z.; Zhang, M.Q. Highly ionic conductive, self-healable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature. J. Mater. Chem. A 2022, 10 (36), 18895–18906.
  75. Yu, Y.; Yin, Y.-B.; Ma, J.-L.; Chang, Z.-W.; Sun, T.; Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 2019, 18, 382–388.
  76. Fan, Q.; Nie, Y.; Sun, Q.; Wang, W.; Bai, L.; Chen, H.; Yang, L.; Yang, H.; Wei, D. Nanocomposite Hybrid Biomass Hydrogels as Flexible Strain Sensors with Self-Healing Ability in Harsh Environments. ACS Appl. Polym. Mater. 2022, 4 (3), 1626–1635.
  77. Wang, C.; Li, R.; Chen, P.; Fu, Y.; Ma, X.; Shen, T.; Zhou, B.; Chen, K.; Fu, J.; Bao, X.; et al. Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 2021, 9 (8), 4758–4769.
  78. Wan, X.; Mu, T.; Yin, G. Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices. Nano-Micro Lett. 2023, 15 (1), 99.
  79. Gu, C.; Wang, M.; Zhang, K.; Li, J.; Lu, Y.-L.; Cui, Y.; Zhang, Y.; Liu, C.-S. A Full-Device Autonomous Self-Healing Stretchable Soft Battery from Self-Bonded Eutectogels. Adv. Mater. 2023, 35 (6), 2208392.
  80. Gao, Y.; Zhou, J.; Xu, F.; Huang, W.; Ma, X.; Dou, Q.; Fang, Y.; Wu, L. Highly Stretchable, Self-Healable and Self-Adhesive Double-Network Eutectogel Based on Gellan Gum and Polymerizable Deep Eutectic Solvent for Strain Sensing. ChemistrySelect 2023, 8 (12), e202204463.
  81. Liu, Y.-L.; Hsieh, C.-Y.; Chen, Y.-W. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer 2006, 47 (8), 2581–2586.
  82. Liu, Y.-L.; Chuo, T.-W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 2013, 4 (7), 2194–2205.
  83. Canary, S.A.; Stevens, M.P. Thermally reversible crosslinking of polystyrene via the furan–maleimide Diels–Alder reaction. J. Polym. Sci. Part A: Polym. Chem. 2003, 30 (8), 1755–1760.
  84. Yoshie, N.; Saito, S.; Oya, N. A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 2011, 52 (26), 6074–6079.
  85. Wang, Y.; Wang, Z.; Jin, B.; Ye, D.; Fan, W.; Ye, X. PolySchiff based self-healing solid-state electrolytes for lithium ion battery. Eur. Polym. J. 2023, 193, 112098.
  86. Gu, W.; Li, F.; Liu, T.; Gong, S.; Gao, Q.; Li, J.; Fang, Z. Recyclable, Self‐Healing Solid Polymer Electrolytes by Soy Protein‐Based Dynamic Network. Adv. Sci. 2022, 9 (11), 2103623.
  87. Deng, K.; Zhou, S.; Xu, Z.; Xiao, M.; Meng, Y. A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 2022, 428, 131224.
  88. Song, Y.; Jiang, Y.; Deng, L.; Yang, G. Self‐Repairable and Flexible Polymer Network Electrolyte with Enhanced Lithium‐Ion Conduction for Lithium Metal Batteries. Chem.––A Eur. J. 2022, 28 (72), e202202717.
  89. Zhou, S.; Wang, X.; Xu, Z.; Guan, T.; Mo, D.; Deng, K. Rapid self-healing, highly conductive and near-single-ion conducting gel polymer electrolytes based on dynamic boronic ester bonds for high-safety lithium metal batteries. J. Energy Storage 2024, 75, 109712.
  90. Zhou, B.; Deng, T.; Yang, C.; Wang, M.; Yan, H.; Yang, Z.; Wang, Z.; Xue, Z. Self‐Healing and Recyclable Polymer Electrolyte Enabled with Boronic Ester Transesterification for Stabilizing Ion Deposition. Adv. Funct. Mater. 2023, 33 (13), 2212005.
  91. Wan, L.; Tan, X.; Du, X.; Xue, X.; Tong, Y.; Zhou, D.; Ling, Y.; Xie, Y.; Zhao, J. Self-healing polymer electrolytes with dynamic-covalent borate for solid-state lithium metal batteries. Eur. Polym. J. 2023, 195, 112191.
  92. Grubbs, R.H. Olefin metathesis. Tetrahedron 2004, 60 (34), 7117–7140.
  93. Zhou, B.; Yang, M.; Zuo, C.; Chen, G.; He, D.; Zhou, X.; Liu, C.; Xie, X.; Xue, Z. Flexible, Self-Healing, and Fire-Resistant Polymer Electrolytes Fabricated via Photopolymerization for All-Solid-State Lithium Metal Batteries. ACS Macro Lett. 2020, 9 (4), 525–532.
  94. Chen, P.; Li, L.; Wang, C.; Yi, H.; Wu, Q.; Song, L.; Wu, X.; Tan, L. Self-healing artificial solid electrolyte interphase enhanced by quadruple hydrogen bonding for stable lithium metal anode. Appl. Surf. Sci. 2022, 604, 154468.
  95. Li, C.; Bhandary, R.; Marinow, A.; Ivanov, D.; Du, M.; Androsch, R.; Binder, W.H. Synthesis and Characterization of Quadrupolar-Hydrogen-Bonded Polymeric Ionic Liquids for Potential Self-Healing Electrolytes. Polymers 2022, 14 (19), 4090.
  96. Burnworth, M.; Tang, L.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472 (7343), 334–337.
  97. Guo, P.; Su, A.; Wei, Y.; Liu, X.; Li, Y.; Guo, F.; Li, J.; Hu, Z.; Sun, J. Healable, Highly Conductive, Flexible, and Nonflammable Supramolecular Ionogel Electrolytes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11 (21), 19413–19420.
  98. Yu, C.; Wang, C.F.; Chen, S. Robust Self‐Healing Host–Guest Gels from Magnetocaloric Radical Polymerization. Adv. Funct. Mater. 2013, 24 (9), 1235–1242.
  99. Zhou, S.; Deng, K.; Xu, Z.; Xiao, M.; Meng, Y. Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries. Chem. Eng. J. 2022, 442, 136083.
  100. Cao, X.; Zhang, P.; Guo, N.; Tong, Y.; Xu, Q.; Zhou, D.; Feng, Z. Self-healing solid polymer electrolyte based on imine bonds for high safety and stable lithium metal batteries. RSC Adv. 2021, 11 (5), 2985–2994.
  101. Grocke, G.L.; Zhang, H.; Kopfinger, S.S.; Patel, S.N.; Rowan, S.J. Synthesis and Characterization of Redox-Responsive Disulfide Cross-Linked Polymer Particles for Energy Storage Applications. ACS Macro Lett. 2021, 10 (12), 1637–1642.
  102. Kitada, S.; Takahashi, M.; Yamaguchi, Y.; Okada, Y.; Chiba, K. Soluble-support-assisted Electrochemical Reactions: Application to Anodic Disulfide Bond Formation. Org. Lett. 2012, 14 (23), 5960–5963.
  103. Wang, H.; Huang, Y.; Shi, Z.; Zhou, X.; Xue, Z. Disulfide Metathesis-Assisted Lithium-Ion Conduction for PEO-Based Polymer Electrolytes. ACS Macro Lett. 2022, 11 (8), 991–998.
  104. Rahman, S.S.; Arshad, M.; Qureshi, A.; Ullah, A. Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS Appl. Mater. Interfaces 2020, 12 (46), 51927–51939.
  105. Huang, Y.; Wang, J.; Shi, Z.; Wang, H.; Xue, Z. Disulfide bond-embedded polyurethane solid polymer electrolytes with self-healing and shape-memory performance. Polym. Chem. 2022, 13 (42), 6002–6009.
  106. Jo, Y.H.; Li, S.; Zuo, C.; Zhang, Y.; Gan, H.; Li, S.; Yu, L.; He, D.; Xie, X.; Xue, Z. Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries. Macromolecules 2020, 53 (3), 1024–1032.
  107. Shigenobu, K.; Philippi, F.; Tsuzuki, S.; Kokubo, H.; Dokko, K.; Watanabe, M.; Ueno, K. On the concentration polarisation in molten Li salts and borate-based Li ionic liquids. Phys. Chem. Chem. Phys. 2023, 25 (9), 6970–6978.
  108. Du, P.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Adv. 2013, 3 (35), 15475–15482.
  109. Lee, Y.-H.; Cheng, C.-L.; Chiang, C.-H.; Tong, Z.-H.; Wang, L.-Y.; Lee, C.-W. Highly self-healable and recyclable graphene nanocomposites composed of a Diels–Alder crosslinking/P3HT nanofibrils dual-network for electromagnetic interference shielding. J. Mater. Chem. C 2021, 9 (43), 15622–15640.
  110. Peterson, A.; Roy, M.; Fagerlund, J.; Lo Re, G.; Müller, C. Synergistic reinforcement of a reversible Diels–Alder type network with nanocellulose. Mater. Adv. 2021, 2 (15), 5171–5180.
  111. Chen, L.; Cai, X.; Sun, Z.; Zhang, B.; Bao, Y.; Liu, Z.; Han, D.; Niu, L. Self-Healing of a Covalently Cross-Linked Polymer Electrolyte Membrane by Diels-Alder Cycloaddition and Electrolyte Embedding for Lithium Ion Batteries. Polymers 2021, 13 (23), 4155.
  112. Lu, Y.-X.; Guan, Z. Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon–Carbon Double Bonds. J. Am. Chem. Soc. 2012, 134 (34), 14226–14231.
  113. Liu, W.-C.; Chung, C.-H.; Hong, J.-L. Highly Stretchable, Self-Healable Elastomers from Hydrogen-Bonded Interpolymer Complex (HIPC) and Their Use as Sensitive, Stable Electric Skin. ACS Omega 2018, 3 (9), 11368–11382.
  114. Gaile, A.; Belyakov, S.; Dūrena, R.; Griščenko, Ņ.; Zukuls, A.; Batenko, N. Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond. Molecules 2024, 29 (7), 1613.
  115. Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J. Mater. Chem. A 2018, 6 (25), 11725–11733.
  116. Li, R.; Fang, Z.; Wang, C.; Zhu, X.; Fu, X.; Fu, J.; Yan, W.; Yang, Y. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 2022, 430, 132706.
  117. Panja, S.; Mondal, S.; Ghosh, S.; Ghosh, U.; Ghosh, K. Effect of Substitution at Amine Functionality of 2,6-Diaminopyridine-Coupled Rhodamine on Metal-Ion Interaction and Self-Assembly. ACS Omega 2020, 5 (23), 13984–13993.
  118. Rao, Y.L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C.; et al. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination. J Am Chem Soc 2016, 138 (18), 6020–6027.
  119. Sun, Y.; Ren, Y.-Y.; Li, Q.; Shi, R.-W.; Hu, Y.; Guo, J.-N.; Sun, Z.; Yan, F. Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. Chin. J. Polym. Sci. 2019, 37 (11), 1053–1059.
  120. Guo, Y.-D.; Xie, X.-M.; Su, J.-F.; Mu, R.; Wang, X.-F.; Jin, H.-P.; Fang, Y.; Ding, Z.; Lv, L.-Y.; Han, N.-X. Mechanical experiment evaluation of the microvascular self-healing capability of bitumen using hollow fibers containing oily rejuvenator. Constr. Build. Mater. 2019, 225, 1026–1035.
  121. Su, J.-F.; Zhang, X.-L.; Guo, Y.-D.; Wang, X.-F.; Li, F.-L.; Fang, Y.; Ding, Z.; Han, N.-X. Experimental observation of the vascular self-healing hollow fibers containing rejuvenator states in bitumen. Constr. Build. Mater. 2019, 201, 715–727.
  122. Zhang, X.-L.; Su, J.-F.; Guo, Y.-D.; Wang, X.-Y.; Fang, Y.; Ding, Z.; Han, N.-X. Novel vascular self-nourishing and self-healing hollow fibers containing oily rejuvenator for bitumen. Constr. Build. Mater. 2018, 183, 150–162.
  123. Xue, X.; Cao, X.; Wan, L.; Tong, Y.; Li, T.; Xie, Y. Crosslinked network solid polymer electrolyte with self‐healing ability and high stability for lithium metal battery. Polym. Int. 2022, 71 (10), 1201–1209.
  124. Jing, B.B.; Evans, C.M. Catalyst-Free Dynamic Networks for Recyclable, Self-Healing Solid Polymer Electrolytes. J. Am. Chem. Soc. 2019, 141 (48), 18932–18937.
  125. Tian, X.; Yang, P.; Yi, Y.; Liu, P.; Wang, T.; Shu, C.; Qu, L.; Tang, W.; Zhang, Y.; Li, M.; et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J. Power Sources 2020, 450, 227629.
  126. Chen, K.; Sun, Y.; Zhang, X.; Liu, J.; Xie, H. A Self‐Healing and Nonflammable Cross‐Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries. Energy Environ. Mater. 2023, 6 (4), e12568.
  127. Wu, N.; Shi, Y.R.; Lang, S.Y.; Zhou, J.M.; Liang, J.Y.; Wang, W.; Tan, S.J.; Yin, Y.X.; Wen, R.; Guo, Y.G. Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angew Chem Int Ed Engl 2019, 58 (50), 18146–18149.
  128. Ahmed, F.; Choi, I.; Rahman, M.M.; Jang, H.; Ryu, T.; Yoon, S.; Jin, L.; Jin, Y.; Kim, W. Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(ethylene-co-acrylic lithium (fluoro sulfonyl)imide), for All-Solid-State Li-Ion Batteries. ACS Appl Mater Interfaces 2019, 11 (38), 34930–34938.
  129. Chen, X.; Yi, L.; Zou, C.; Liu, J.; Yu, J.; Zang, Z.; Tao, X.; Luo, Z.; Guo, X.; Chen, G.; et al. High-Performance Gel Polymer Electrolyte with Self-Healing Capability for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5 (4), 5267–5276.
  130. Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8 (6), 618–624.
  131. Kang, J.; Son, D.; Wang, G.-J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J.Y.; Katsumata, T.; Mun, J.; Lee, Y.; et al. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30 (13), 1706846.
  132. Wang, Y.; Huang, F.; Chen, X.; Wang, X.-W.; Zhang, W.-B.; Peng, J.; Li, J.; Zhai, M. Stretchable, Conductive, and Self-Healing Hydrogel with Super Metal Adhesion. Chem. Mater. 2018, 30 (13), 4289–4297.
  133. Yang, J.; Lu, Z.; Zhou, X.; Sun, Z.; Hu, Y.; Zhang, T.; Wu, C.; Zhang, G.; Jiang, W. Current Self-Healing Binders for Energetic Composite Material Applications. Molecules 2023, 28 (1), 428.
  134. Huang, S.; Ren, J.; Liu, R.; Yue, M.; Huang, Y.; Yuan, G. The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries. Int. J. Energy Res. 2018, 42 (3), 919–935.
  135. Miglietta, F.; Tsantilis, L.; Baglieri, O.; Santagata, E. A new approach for the evaluation of time–temperature superposition effects on the self-healing of bituminous binders. Constr. Build. Mater. 2021, 287, 122987.
  136. Sun, D.; Sun, G.; Zhu, X.; Ye, F.; Xu, J. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations. Fuel 2018, 211, 609–620.
  137. Tang, J.; Liu, Q.; Wu, S.; Ye, Q.; Sun, Y.; Schlangen, E. Investigation of the optimal self-healing temperatures and healing time of asphalt binders. Constr. Build. Mater. 2016, 113, 1029–1033.
  138. Qiu, X.; Cheng, W.; Xu, W.; Xiao, S.; Yang, Q. Fatigue evolution characteristic and self-healing behaviour of asphalt binders. Int. J. Pavement Eng. 2022, 23 (5), 1459–1470.
  139. Sun, W.; Wang, H. Self-healing of asphalt binder with cohesive failure: Insights from molecular dynamics simulation. Constr. Build. Mater. 2020, 262, 120538.
  140. Liu, M.R.; Ye, C.X.; Peng, L.B.; Weng, J.Z. Influence of Binder on Impedance of Lithium Batteries: A Mini-review. J. Electr. Eng. Technol. 2022, 17 (2), 1281–1291.
  141. Gong, Y.; Xu, J.; Yan, E.-h.; Cai, J.-h. The Self-Healing Performance of Carbon-Based Nanomaterials Modified Asphalt Binders Based on Molecular Dynamics Simulations. Front. Mater. 2021, 7, 599551.
  142. Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; et al. A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High-Performance Sulfur Electrodes in Lithium-Sulfur Battery. Adv. Energy Mater. 2018, 8 (12), 1702889.
  143. Qiu, L.; Shao, Z.; Wang, D.; Wang, W.; Wang, F.; Wang, J. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Carbohydr. Polym. 2014, 111, 588–591.
  144. Trivedi, S.; Pamidi, V.; Bautista, S.P.; Shamsudin, F.N.A.; Weil, M.; Barpanda, P.; Bresser, D.; Fichtner, M. Water-Soluble Inorganic Binders for Lithium-Ion and Sodium-Ion Batteries. Adv. Energy Mater. 2024, 14 (9), 2303338.
  145. Guo, R.; Yang, Y.; Huang, X.L.; Zhao, C.; Hu, B.; Huo, F.; Liu, H.K.; Sun, B.; Sun, Z.; Dou, S.X. Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium-Sulfur Batteries. Adv. Funct. Mater. 2024, 34 (1), 2307108.
  146. Zhang, T.; Mao, R.; Jiang, W.; Li, B.; Song, Z.; Liu, S.; Jian, X.; Hu, F. Dynamic cross-linking of zwitterionic polymer binder based on host–guest interactions for Li-S batteries with enhanced safety and electrochemical performance. Nano Energy 2023, 114, 108603.
  147. Ramdhiny, M.N.; Jeon, J.-W. Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries. Carbon Energy 2024, 6 (4), e356.
  148. Gupta, A.; Badam, R.; Matsumi, N. Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries. ACS Appl. Energy Mater. 2022, 5 (7), 7977–7987.
  149. Hu, S.; Wang, L.; Huang, T.; Yu, A. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 449, 227472.
  150. Zhang, J.; Wang, N.; Zhang, W.; Fang, S.; Yu, Z.; Shi, B.; Yang, J. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. J Colloid Interface Sci 2020, 578, 452–460.
  151. Rajeev, K.K.; Nam, J.; Jang, W.; Kim, Y.; Kim, T.-H. Polysaccharide-based self-healing polymer binder via Schiff base chemistry for high-performance silicon anodes in lithium-ion batteries. Electrochim. Acta 2021, 384, 138364.
  152. Kim, J.; Choi, J.; Park, K.; Kim, S.; Nam, K.W.; Char, K.; Choi, J.W. Host–Guest Interlocked Complex Binder for Silicon–Graphite Composite Electrodes in Lithium Ion Batteries. Adv. Energy Mater. 2022, 12 (11), 2103718.
  153. Zhu, Y.; Shen, Q.; Wei, L.; Fu, X.; Huang, C.; Zhu, Y.; Zhao, L.; Huang, G.; Wu, J. Ultra-Tough, Strong, and Defect-Tolerant Elastomers with Self-Healing and Intelligent-Responsive Abilities. ACS Appl. Mater. Interfaces 2019, 11 (32), 29373–29381.
  154. Nam, J.; Jang, W.; Rajeev, K.K.; Lee, J.-H.; Kim, Y.; Kim, T.-H. Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes. J. Power Sources 2021, 499, 229968.
  155. Qi, Y.; Shen, C.; Hou, Q.; Ren, Z.; Jin, T.; Xie, K. A self-healing liquid metal anode for lithium-ion batteries. J. Energy Chem. 2022, 72, 522–531.
  156. Gong, Y.; Yao, M.; Nie, J.; He, Y. Healing Strategy Based on Space Adjustment for Cross-Linked Polymer Networks. Langmuir 2022, 38 (40), 12229–12234.
  157. Hu, Y.H.; Zhao, X.H.; Suo, Z.G. Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 2010, 25 (6), 1007–1010.
  158. Song, K.; Hu, D.; Tong, Y.; Yue, X.G. Remaining life prediction of lithium-ion batteries based on health management: A review. J. Energy Storage 2023, 57, 106193.
  159. Guo, J.; Gao, F.; Li, D.; Luo, X.; Sun, Y.; Wang, X.; Ran, Z.; Wu, Q.; Li, S. Novel Strategy of Constructing Hollow Ga2O3@N-CQDs as a Self-Healing Anode Material for Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8 (36), 13692–13700.
  160. Jeong, Y.K.; Choi, J.W. Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes. ACS Nano 2019, 13 (7), 8364–8373.
  161. Chen, D.; Wang, D.; Yang, Y.; Huang, Q.; Zhu, S.; Zheng, Z. Self-Healing Materials for Next-Generation Energy Harvesting and Storage Devices. Adv. Energy Mater. 2017, 7 (23), 1700890.
  162. Ma, W.; Wan, S.; Cui, X.; Hou, G.; Xiao, Y.; Rong, J.; Chen, S. Exploration and Application of Self-Healing Strategies in Lithium Batteries. Adv. Funct. Mater. 2023, 33 (15), 2212821.
  163. Li, J.; Geng, L.; Wang, G.; Chu, H.; Wei, H. Self-Healable Gels for Use in Wearable Devices. Chem. Mater. 2017, 29 (21), 8932–8952.
  164. Kidanu, W.G.; Hur, J.; Kim, I.T. Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries. Materials 2021, 15 (1), 168.
  165. Deshpande, R.D.; Li, J.; Cheng, Y.-T.; Verbrugge, M.W. Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries. J. Electrochem. Soc. 2011, 158 (8), A845.
  166. Huang, Y.; Wang, H.; Jiang, Y.; Jiang, X. Preparation of room temperature liquid metal negative electrode for lithium ion battery in one step stirring. Mater. Lett. 2020, 276, 128261.
  167. Huang, C.; Wang, X.; Cao, Q.; Zhang, D.; Jiang, J.-Z. A Self-Healing Anode for Li-Ion Batteries by Rational Interface Modification of Room-Temperature Liquid Metal. ACS Appl. Energy Mater. 2021, 4 (11), 12224–12231.
  168. Meng, F.; Wang, F.; Yu, H.; Zhao, Z.; Lv, Y.; Ma, C.; Zhang, D.; Liu, X. Liquid Metal-Modified Nanoporous SiGe Alloy as an Anode for Li-Ion Batteries and Its Self-Healing Performance. ACS Appl. Energy Mater. 2021, 4 (12), 14575–14581.
  169. Dai, W.; Wang, J.; Xiang, K.; Hu, W.; Sun, J.; Zhang, H.; Wang, L. Highly Stretchable, Ultra-Sensitive, and Self-Healable Multifunctional Flexible Conductive Hydrogel Sensor for Motion Detection and Information Transmission. ACS Appl. Mater. Interfaces 2023, 15 (24), 29499–29510.
  170. Zhang, Z.; Abidi, N.; Lucia, L.A. Dual Crosslinked-Network Self-Healing Composite Hydrogels Exhibit Enhanced Water Adaptivity and Reinforcement. Ind. Eng. Chem. Res. 2022, 61 (49), 17876–17884.
  171. Sahoo, S.D.; Vasudha, T.K.; Muthuvijayan, V.; Prasad, E. Chitosan-Based Self-Healable and Adhesive Hydrogels for Flexible Strain Sensor Application. ACS Appl. Polym. Mater. 2022, 4 (12), 9176–9185.
  172. Liu, S.; Zhang, R.; Wang, C.; Mao, J.; Chao, D.; Zhang, C.; Zhang, S.; Guo, Z. Zinc ion Batteries: Bridging the Gap from Academia to Industry for Grid-Scale Energy Storage. Angew. Chem. Int. Ed. 2024, 63 (17), e202400045.
  173. Liu, Z.; Li, G.; Xi, M.; Huang, Y.; Li, H.; Jin, H.; Ding, J.; Zhang, S.; Zhang, C.; Guo, Z. Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery. Angew. Chem. Int. Ed. 2024, 63 (14), e202319091.
  174. Li, G.; Zhao, Z.; Zhang, S.; Sun, L.; Li, M.; Yuwono, J.A.; Mao, J.; Hao, J.; Vongsvivut, J.; Xing, L.; et al. A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 2023, 14 (1), 6526.
  175. Liu, H.; Zhang, W.; Tu, J.; Han, Q.; Guo, Y.; Sha, W.; Wang, F.; Tian, J.; Zhao, Y.; Tang, S.; et al. A room-temperature liquid-metal composite anode for dendrite-free lithium-ion batteries. Mater. Today Commun. 2022, 30, 103062.
  176. Zhang, Y.; Tan, L.; Wu, Y.; An, Y.; Liu, Y.; Wang, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J. Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Appl. Mater. Today 2022, 26, 101300.
  177. Yu, J.; Xia, J.; Guan, X.; Xiong, G.; Zhou, H.; Yin, S.; Chen, L.; Yang, Y.; Zhang, S.; Xing, Y.; et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries. Electrochim. Acta 2022, 425, 140721.
  178. Zhu, J.; Wu, Y.; Huang, X.; Huang, L.; Cao, M.; Song, G.; Guo, X.; Sui, X.; Ren, R.; Chen, J. Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 2019, 62, 883–889.