Downloads
- Download
This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Emerging Piezoelectric Metamaterials for Biomedical Applications
1 Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
2 Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
* Correspondence: jingwei.xie@unmc.edu
Received: 30 September 2024; Revised: 18 November 2024; Accepted: 20 November 2024; Published: 21 November 2024
Abstract: Emerging piezoelectric metamaterials hold immense promise for biomedical applications by merging the intrinsic electrical properties of piezoelectricity with the precise architecture of metamaterials. This review provides a comprehensive overview of various piezoelectric materials- such as molecular crystals, ceramics, and polymers—known for their exceptional piezoelectric performance and biocompatibility. We explore the advanced engineering approaches, including molecular design, supramolecular packing, and 3D assembly, which enable the customization of piezoelectric properties for targeted biomedical applications. Particular attention is given to the pivotal role of metamaterial structuring in the development of 0D spheres, 1D fibers and tubes, 2D films, and 3D scaffolds. Key biomedical applications, including tissue engineering, drug delivery, wound healing, and biosensing, are discussed through illustrative examples. Finally, the article addresses critical challenges and future directions, aiming to drive further innovations in piezoelectric biomaterials for next-generation healthcare technologies.
Keywords:
piezoelectric metamaterials molecular design supramolecular packing 3D assembly biomedical applicationsReferences
- Evangel Chinyere, A.; Femi, O.; Opeoluwa Oluwanifemi, A.; Jane Osareme, O.; Tolulope, O.; Ebere Rosita, D. Biomedical engineering advances: A review of innovations in healthcare and patient outcomes. Int. J. Sci. Res. Arch. 2024, 11, 870–882.
- Yi, J.; Zou, G.; Huang, J.; Ren, X.; Tian, Q.; Yu, Q.; Wang, P.; Yuan, Y.; Tang, W.; Wang, C.; et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023, 624, 295–302.
- Chen, S.; Tong, X.; Huo, Y.; Liu, S.; Yin, Y.; Tan, M.L.; Cai, K.; Ji, W. Piezoelectric biomaterials inspired by nature for applications in biomedicine and nanotechnology. Adv. Mater. 2024, 36, e2406192.
- Yang, J.; Li, Z.; Xin, X.; Gao, X.; Yuan, X.; Wang, Z.; Yu, Z.; Wang, X.; Zhou, J.; Dong, S. Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. Sci. Adv. 2019, 5, eaax1782.
- Qiao, L.; Gao, X.; Ren, K.; Qiu, C.; Liu, J.; Jin, H.; Dong, S.; Xu, Z.; Li, F. Designing transparent piezoelectric metasurfaces for adaptive optics. Nat. Commun. 2024, 15, 805.
- Lin, B.; Ong, K.P.; Yang, T.; Zeng, Q.; Hui, H.K.; Ye, Z.; Sim, C.; Yen, Z.; Yang, P.; Dou, Y.; et al. Ultrahigh electromechanical response from competing ferroic orders. Nature 2024, 633, 798–803.
- Kim, Y.; Suh, J.; Shin, J.; Liu, Y.; Yeon, H.; Qiao, K.; Kum, H.; Kim, C.; Lee, H.; Choi, C.; et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 2022, 377, 859–864.
- Yang, M.M.; Zhu, T.Y.; Renz, A.B.; Sun, H.M.; Liu, S.; Gammon, P.M.; Alexe, M. Auxetic piezoelectric effect in heterostructures. Nat. Mater. 2024, 23, 95–100.
- Mac, C.H.; Tai, H.M.; Huang, S.M.; Peng, H.H.; Sharma, A.K.; Nguyen, G.L.T.; Chang, P.J.; Wang, J.T.; Chang, Y.; Lin, Y.J.; et al. Orally ingested self-powered stimulators for targeted gut-brain axis electrostimulation to treat obesity and metabolic disorders. Adv. Mater. 2024, 36, e2310351.
- Li, J.; Zhao, X.; Xia, Y.; Qi, X.; Jiang, C.; Xiao, Y.; Jiang, F.; Jiang, X.; Yuan, G. Strontium-containing piezoelectric biofilm promotes dentin tissue regeneration. Adv. Mater. 2024, 36, e2313419.
- You, Y.; Jiang, J.; Zheng, G.; Chen, Z.; Zhu, Y.X.; Ma, H.; Lin, H.; Guo, X.; Shi, J. In situ piezoelectric-catalytic anti-inflammation promotes the rehabilitation of acute spinal cord injury in synergy. Adv. Mater. 2024, 36, e2311429.
- Fernandez-Yague, M.A.; Trotier, A.; Demir, S.; Abbah, S.A.; Larranaga, A.; Thirumaran, A.; Stapleton, A.; Tofail, S.A.M.; Palma, M.; Kilcoyne, M.; et al. A self-powered piezo-bioelectric device regulates tendon repair-associated signaling pathways through modulation of mechanosensitive ion channels. Adv. Mater. 2021, 33, e2008788.
- Li, T.; Qu, M.; Carlos, C.; Gu, L.; Jin, F.; Yuan, T.; Wu, X.; Xiao, J.; Wang, T.; Dong, W.; et al. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 2021, 33, e2006093.
- Cui, H.; Hensleigh, R.; Yao, D.; Maurya, D.; Kumar, P.; Kang, M.G.; Priya, S.; Zheng, X.R. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 2019, 18, 234–241.
- Xu, D.; Fu, S.; Zhang, H.; Lu, W.; Xie, J.; Li, J.; Wang, H.; Zhao, Y.; Chai, R. Ultrasound-responsive aligned piezoelectric nanofibers derived hydrogel conduits for peripheral nerve regeneration. Adv. Mater. 2024, 36, e2307896.
- Tian, G.; Deng, W.; Yang, T.; Zhang, J.; Xu, T.; Xiong, D.; Lan, B.; Wang, S.; Sun, Y.; Ao, Y.; et al. Hierarchical piezoelectric composites for noninvasive continuous cardiovascular monitoring. Adv. Mater. 2024, 36, e2313612.
- Imani, I.M.; Kim, H.S.; Shin, J.; Lee, D.G.; Park, J.; Vaidya, A.; Kim, C.; Baik, J.M.; Zhang, Y.S.; Kang, H.; et al. Advanced ultrasound energy transfer technologies using metamaterial structures. Adv. Sci. 2024, 11, e2401494.
- Chen, J.C.; Bhave, G.; Alrashdan, F.; Dhuliyawalla, A.; Hogan, K.J.; Mikos, A.G.; Robinson, J.T. Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration. Nat. Mater. 2024, 23, 139–146.
- Yan, Z.; Liu, X.; Ding, B.; Yu, J.; Si, Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 2023, 14, 2116.
- Zhu, L.; Ding, X.; Wu, X.; Yan, Z.; Lei, S.; Si, Y. Innovative and sustainable multifunctional finishing method for textile materials by applying engineered water nanostructures. ACS Sustain. Chem. Eng. 2020, 8, 14833–14844.
- Ma, K.; Chen, H.; Wu, Z.; Hao, X.; Yan, G.; Li, W.; Shao, L.; Meng, G.; Zhang, W. A wave-confining metasphere beamforming acoustic sensor for superior human-machine voice interaction. Sci. Adv. 2022, 8, eadc9230.
- Petroff, C.A.; Cassone, G.; Sponer, J.; Hutchison, G.R. Intrinsically polar piezoelectric self-assembled oligopeptide monolayers. Adv. Mater. 2021, 33, e2007486.
- Liu, Y.; He, H.; Cao, Y.; Liang, Y.; Huang, J. Inverse design of TPMS piezoelectric metamaterial based on deep learning. Mech. Mater. 2024, 198, 105109.
- Cai, J.; Yan, L.; Seyedkanani, A.; Orsat, V.; Akbarzadeh, A. Nano-architected GaN metamaterials with notable topology-dependent enhancement of piezoelectric energy harvesting. Nano Energy 2024, 129, 109990.
- Shi, J.; Ju, K.; Chen, H.; Mirabolghasemi, A.; Akhtar, S.; Sasmito, A.; Akbarzadeh, A. 3D printed architected shell-based ferroelectric metamaterials with programmable piezoelectric and pyroelectric properties. Nano Energy 2024, 123, 109385.
- Li, Z.; Yi, X.; Yang, J.; Bian, L.; Yu, Z.; Dong, S. Designing artificial vibration modes of piezoelectric devices using programmable, 3d ordered structure with piezoceramic strain units. Adv. Mater. 2022, 34, e2107236.
- Wang, X.; Sun, K.; Wang, C.; Yang, M.; Qian, K.; Ye, B.; Guo, X.; Shao, Y.; Chu, C.; Xue, F.; et al. Ultrasound-responsive microfibers promoted infected wound healing with neuro-vascularization by segmented sonodynamic therapy and electrical stimulation. Biomaterials 2025, 313, 122803.
- Priangga Perdana, P.; Akasaka, S.; Konosu, Y.; Zhang, S.; Tanioka, A.; Matsumoto, H. Structure-piezoelectric property relationships of thin films composed of electrospun aligned poly(vinylidene fluoride) nanofibers. Nanomaterials 2024, 14, 491.
- Kowalchik, T.; Khan, F.; Le, K.; Leland, P.; Roundy, S.; Warren, R. Effect of pore structure on the piezoelectric properties of barium titanate-polyvinylidene fluoride composite films. Nano Energy 2023, 109, 108276.
- Lu, H.; Cui, H.; Lu, G.; Jiang, L.; Hensleigh, R.; Zeng, Y.; Rayes, A.; Panduranga, M.K.; Acharya, M.; Wang, Z.; et al. 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat. Commun. 2023, 14, 2418.
- Li, X.; Zhang, Z.; Peng, Z.; Yan, X.; Hong, Y.; Liu, S.; Lin, W.; Shan, Y.; Wang, Y.; Yang, Z. Fast and versatile electrostatic disc microprinting for piezoelectric elements. Nat. Commun. 2023, 14, 6488.
- Wu, J.; Jiao, C.; Yu, H.; Naqvi, S.M.R.; Ge, M.; Cai, K.; Liang, H.; Liu, J.; Zhao, J.; Tian, Z.; et al. 3D Printed barium titanate/calcium silicate composite biological scaffold combined with structural and material properties. Biomater. Adv. 2024, 158, 213783.
- Lee, J.E.; Sun, Y.-C.; Lees, I.; Naguib, H.E. Additive manufacturing of hybrid piezoelectric/magnetic self-sensing actuator using pellet extrusion and immersion precipitation with statistical modelling optimization. Compos. Sci. Technol. 2024, 247, 110393.
- Mirjalali, S.; Bagherzadeh, R.; Mahdavi Varposhti, A.; Asadnia, M.; Huang, S.; Chang, W.; Peng, S.; Wang, C.H.; Wu, S. Enhanced piezoelectricity of PVDF-TrFE nanofibers by intercalating with electrosprayed BaTiO3. ACS Appl. Mater. Interfaces 2023, 15, 41806–41816.
- Hong, Y.; Liu, S.; Yang, X.; Hong, W.; Shan, Y.; Wang, B.; Zhang, Z.; Yan, X.; Lin, W.; Li, X.; et al. A bioinspired surface tension-driven route toward programmed cellular ceramics. Nat. Commun. 2024, 15, 5030.
- Yan, Z.; Liu, X.; Si, Y.; Dai, Z.; Yu, J.; Ding, B. Ternary-porous conjugated N-halamine nanofibers/graphene aerogels for rechargeable degradation of mustard gas. Adv. Funct. Mater. 2022, 32, 2206018.
- Zhang, J.; Yang, T.; Tian, G.; Lan, B.; Deng, W.; Tang, L.; Ao, Y.; Sun, Y.; Zeng, W.; Ren, X.; et al. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber Mater. 2023, 6, 133–144.
- Tran, H.Q.; Shreem Polavaram, N.; Yan, Z.; Lee, D.; Xiao, Y.; Shahriar, S.M.S.; Yan, Z.; Xie, J. Enoki-inspired microfibers and extracellular matrix enhance biaxially interlocking interfaces. Small Struct. 2024, 5, 2400193.
- Wang, T.; Ouyang, H.; Luo, Y.; Xue, J.; Wang, E.; Zhang, L.; Zhou, Z.; Liu, Z.; Li, X.; Tan, S.; et al. Rehabilitation exercise–driven symbiotic electrical stimulation system accelerating bone regeneration. Sci. Adv. 2024, 10, eadi6799.
- Chen, Z.; Lai, Y.; Xu, S.; Zhu, M.; Sun, Y.; Cheng, Y.; Zhao, G. A self-powered controllable microneedle drug delivery system for rapid blood pressure reduction. Nano Energy 2024, 123, 109344.
- Das, R.; Le, T.T.; Schiff, B.; Chorsi, M.T.; Park, J.; Lam, P.; Kemerley, A.; Supran, A.M.; Eshed, A.; Luu, N.; et al. Thirunavukkarasu, M.; Maulik, N.; Nguyen, T.D. In vitro-biodegradable piezoelectric skin-wound scaffold. Biomaterials 2023, 301, 122270.
- Liu, H.; Zeng, Y.; Gong, C.; Chen, X.; Kijanka, P.; Zhang, J.; Genyk, Y.; Tchelepi, H.; Wang, C.; Zhou, Q.; et al. Wearable bioadhesive ultrasound shear wave elastography. Sci. Adv. 2024, 10, eadk8426.
- Tian, B.; Tian, R.; Liu, S.; Wang, Y.; Gai, S.; Xie, Y.; Yang, D.; He, F.; Yang, P.; Lin, J. Doping engineering to modulate lattice and electronic structure for enhanced piezocatalytic therapy and ferroptosis. Adv. Mater. 2023, 35, 2304262.
- Chorsi, M.; Le, T.; Lin, F.; Vinikoor, T.; Das, R.; Stevens, J.; Mundrane, C.; Park, J.; Tran, K.; Liu, Y.; et al. Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications. Sci. Adv. 2023, 9, eadg6075.
- Khanra, S.; Vassiliades, S.V.; Alves, W.A.; Yang, K.; Glaser, R.; Ghosh, K.; Bhattacharya, P.; Yu, P.; Guha, S. Enhanced piezoresponse and nonlinear optical properties of fluorinated self-assembled peptide nanotubes. AIP Adv. 2019, 9, 115202.
- Sun, J.; Guo, H.; Ribera, J.; Wu, C.; Tu, K.; Binelli, M.; Panzarasa, G.; Schwarze, F.; Wang, Z.L.; Burgert, I. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 2020, 14, 14665–14674.
- He, Q.; Zeng, Y.; Jiang, L.; Wang, Z.; Lu, G.; Kang, H.; Li, P.; Bethers, B.; Feng, S.; Sun, L.; et al. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat. Commun. 2023, 14, 6477.
- Guerin, S.; Tofail, S.A.M.; Thompson, D. Longitudinal piezoelectricity in orthorhombic amino acid crystal films. Cryst. Growth Des. 2018, 18, 4844–4848.
- Dolai, J.; Maity, A.; Mukherjee, B.; Ray, R.; Jana, N.R. Piezoelectric amyloid fibril for energy harvesting, reactive oxygen species generation, and wireless cell therapy. ACS Appl. Mater. Interfaces 2024, 16, 217–227.
- Kim, H.; Lee, S.W. Molecular mechanisms and enhancement of piezoelectricity in the M13 virus. Adv. Funct. Mater. 2024, 34, 2407462.
- Son, H.; Park, S. Collagen-based biopiezoelectric nanogenerator prepared from pollack skin. Mater. Today Sustain. 2024, 25, 100689.
- Zhu, Q.; Chen, X.; Li, D.; Xiao, L.; Chen, J.; Zhou, L.; Chen, J.; Yuan, Q. Large enhancement on performance of flexible cellulose-based piezoelectric composite film by welding CNF and MXene via growing ZnO to construct a “brick-rebar-mortar” structure. Adv. Funct. Mater. 2024, 2408588. https://doi.org/10.1002/adfm.202408588.
- Barlemont, S.; Burg, A.; Serghei, A.; Capsal, J.F.; Fumagalli, M. Macroscopic tensile piezoelectricity characterization of β-chitin in tubeworm tissues. Cellulose 2023, 30, 8451–8458.
- Niu, Q.; Chen, J.; Fan, S.; Yao, X.; Gu, Y.; Hsiao, B.S.; Wei, H.; Zhang, Y. Silk nanoribbon films with enriched silk II structure and enhanced piezoelectricity for self-powered implantable and wearable devices. Nano Today 2024, 56, 102228.
- Yu, Q.; Bai, Y.; Li, Z.; Jiang, F.; Luo, R.; Gai, Y.; Liu, Z.; Zhou, L.; Wang, Y.; Li, C.; et al. Interface-induced high piezoelectric γ-glycine-based flexible biodegradable films. Nano Energy 2024, 121, 109196.
- Zhang, Z.; Li, X.; Peng, Z.; Yan, X.; Liu, S.; Hong, Y.; Shan, Y.; Xu, X.; Jin, L.; Liu, B.; et al. Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling. Nat. Commun. 2023, 14, 4094.
- Yang, F.; Li, J.; Long, Y.; Zhang, Z.; Wang, L.; Sui, J.; Dong, Y.; Wang, Y.; Taylor, R.; Ni, D.; et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 2021, 373, 337–342.
- Xue, H.; Jin, J.; Tan, Z.; Chen, K.; Lu, G.; Zeng, Y.; Hu, X.; Peng, X.; Jiang, L.; Wu, J. Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms. Sci. Adv. 2024, 10, eadn0260.
- Liu, X.; Zhang, M.; Jiang, B.; Zhang, Q.; Chen, H.; Shen, Y.; Wang, Z.; Yin, X. Process investigation on robust electrospinning of non-aligned and aligned polyvinylidene fluoride nanofiber mats for flexible piezoelectric sensors. Polymers 2024, 16, 816.
- Guerin, S.; Khorasani, S.; Gleeson, M.; O’Donnell, J.; Sanii, R.; Zwane, R.; Reilly, A.M.; Silien, C.; Tofail, S.A.M.; Liu, N.; et al. A piezoelectric ionic cocrystal of glycine and sulfamic acid. Cryst. Growth Des. 2021, 21, 5818–5827.
- Fox, G.; Fink, G. The piezoelectric properties of quartz and tourmaline. Physics 1934, 5, 302–306.
- Sawyer, C.; Tower, C. Rochelle salt as a dielectric. Phys. Rev. 1930, 35, 269–273.
- Zhang, R.; Yang, D.; Zang, P.; He, F.; Gai, S.; Kuang, Y.; Yang, G.; Yang, P. Structure engineered high piezo-photoelectronic performance for boosted sono-photodynamic therapy. Adv. Mater. 2024, 36, e2308355.
- Zhang, X.; Qiao, Z.; Lian, M.; Han, Y.; Lin, J.; Yu, B.; Peng, L.; Wang, H.; Dai, K. In-situ electret scaffolds with controllable electric fields printed by MEW for bone tissue regeneration. Chem. Eng. J. 2024, 496, 154330.
- Wang, A.; Ma, X.; Yang, Y.; Shi, G.; Han, L.; Hu, X.; Shi, R.; Yan, J.; Guo, Q.; Zhao, Y. Biophysical-driven piezoelectric and aligned nanofibrous scaffold promotes bone regeneration by re-establishing physiological electrical microenvironment. Nano Res. 2024, 17, 7376–7393.
- Carofiglio, M.; Percivalle, N.M.; Hernandez, S.; Laurenti, M.; Canavese, G.; Matos, J.C.; Goncalves, M.C.; Cauda, V. Ultrasound-assisted water oxidation: Unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment. Biomed. Microdevices 2024, 26, 37.
- Xu, L.; Lv, J.; Yu, S. Piezoelectric properties of as-spun poly(vinylidene fluoride)/multi-walled carbon nanotube/zinc oxide nanoparticle (PVDF/MWCNT/ZnO) nanofibrous films. Polymers 2024, 16, 2483.
- Qiu, Y.; Bao, C.; Gou, M.; Zhao, J.; Yang, D. Fabrication and piezoelectric analysis based on nanogrid architecture composed of ZnO ultrathin nanosheets grown on fiber paper substrates for wearable energy harvesting. Mater. Today Commun. 2024, 39, 108598.
- Chang, G.; Pan, X.; Hao, Y.; Du, W.; Wang, S.; Zhou, Y.; Yang, J.; He, Y. PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure. RSC Adv. 2024, 14, 11775–11783.
- Zhang, Q.; Zhu, J.; Fei, X.; Zhu, M. A Janus nanofibrous scaffold integrated with exercise-driven electrical stimulation and nanotopological effect enabling the promotion of tendon-to-bone healing. Nano Today 2024, 55, 102208.
- Shan, Y.; Wang, E.; Cui, X.; Xi, Y.; Ji, J.; Yuan, J.; Xu, L.; Liu, Z.; Li, Z. A biodegradable piezoelectric sensor for real-time evaluation of the motor function recovery after nerve injury. Adv. Funct. Mater. 2024, 34, 2400295.
- Schönlein, R.; Larrañaga, X.; Azkune, M.; Li, Y.; Liu, G.; Müller, A.J.; Aguirresarobe, R.; Ugartemendia, J.M. The combined effects of optical purity, chain orientation, crystallinity, and dynamic mechanical activation as means to obtain highly piezoelectric polylactide materials. ACS Appl. Mater. Interfaces 2024, 6, 7561–7571.
- Cui, X.; Shan, Y.; Li, J.; Xiao, M.; Xi, Y.; Ji, J.; Wang, E.; Zhang, B.; Xu, L.; Zhang, M.; et al. Bifunctional piezo-enhanced PLLA/ZA coating prevents aseptic loosening of bone implants. Adv. Funct. Mater. 2024, 34, 2403759.
- Li, T.; Yuan, Y.; Gu, L.; Li, J.; Shao, Y.; Yan, S.; Zhao, Y.; Carlos, C.; Dong, Y.; Qian, Het al. Ultrastable piezoelectric biomaterial nanofibers and fabrics as an implantable and conformal electromechanical sensor patch. Sci. Adv. 2024, 10, eadn8706.
- Tan, J.; Li, T.; Xie, Y.; Chen, M.; Li, L.; Zhang, C.; Chen, Y.; Pang, L.; Zhang, C.; Li, Y.; et al. Fabricating high-performance biomedical PLLA/PVDF blend micro bone screws through in situ structuring of oriented PVDF submicron fibers in microinjection molding. Compos. Part. B Eng. 2024, 281, 111567.
- Yuan, H.; Cazade, P.A.; Zhou, S.; Shimon, L.J.W.; Yuan, C.; Tan, D.; Liu, C.; Fan, W.; Thangavel, V.; Cao, Y.; et al. Molecular engineering of ordered piezoelectric sulfonic acid-containing assemblies. Small 2024, 20, e2309493.
- Wang, Q.; Tian, Y.; Yao, M.; Fu, J.; Wang, L.; Zhu, Y. Bimetallic organic frameworks of high piezovoltage for sono-piezo dynamic therapy. Adv. Mater. 2023, 35, e2301784.
- Lin, S.C.; Joshi, R.; Ganguly, A.; Barman, S.R.; Pal, A.; Kaswan, K.; Liu, K.L.; Nain, A.; Kao, F.C.; Lin, Z.H. Ultrasound-guided drug delivery system utilizing piezocatalytic MoS2 nanomaterials for anti-inflammatory therapy. Nano Energy 2024, 127, 109732.
- Liu, Q.; Liu, L.; Fan, D.; Xie, S.; Wang, C.; Gou, X.; Li, X. Self-powered biodegradable piezoelectric fibrous composites as antibacterial and wound healing dressings. Appl. Mater. Today 2024, 37, 102120.
- Wan, X.; Wang, Z.; Zhao, X.; Hu, Q.; Li, Z.; Lin Wang, Z.; Li, L. Flexible and highly piezoelectric nanofibers with organic–inorganic coaxial structure for self-powered physiological multimodal sensing. Chem. Eng. J. 2023, 451, 139077.
- Pan, Q.; Zheng, Y.; Zhou, Y.; Zhang, X.; Yuan, M.; Guo, J.; Xu, C.; Cheng, Z.; Kheraif, A.A.A.; Liu, M.; et al. Doping engineering of piezo-sonocatalytic nanocoating confer dental implants with enhanced antibacterial performances and osteogenic activity. Adv. Funct. Mater. 2024, 34, 2313553.
- Liu, J.; Li, S.; Zhou, S.; Chen, Z.; Xu, J.; Cui, N.; Yuan, M.; Li, B.; Gu, L. A high-performance, biocompatible, and fully biodegradable piezo-triboelectric hybrid nanogenerator based on PVA/Glycine/PVA heterostructured piezoelectric film. Nano Energy 2024, 122, 109310.
- Lin, Q.; Zhang, Y.; Chen, L.; Zhang, H.; An, C.; Li, C.; Wang, Q.; Song, J.; He, W.; Wang, H. Glycine/alginate-based piezoelectric film consisting of a single, monolithic beta-glycine spherulite towards flexible and biodegradable force sensor. Regen. Biomater. 2024, 11, rbae047.
- Li, J.; Carlos, C.; Zhou, H.; Sui, J.; Wang, Y.; Silva-Pedraza, Z.; Yang, F.; Dong, Y.; Zhang, Z.; Hacker, T.A.; et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 2023, 14, 6562.
- Yang, Z.; He, X.; Chen, Y.; Zhu, M.; Xu, P. 3D-printed piezoelectric scaffolds composed of uniform core-shell structured BaTiO3@ bioactive glasses particles for bone regeneration. Ceram. Int. 2024, 50, 18303–18311.
- Fang, Q.; Wang, D.; Lin, W.; Ge, Z.; Deng, X.; Zhao, R.; Tang, Y.; Liu, W.; Xiong, Z.; Duan, A.; et al. Highly stretchable piezoelectric elastomer for accelerated repairing of skeletal muscles loss. Adv. Funct. Mater. 2024, 34, 2313055.
- Zhang, H.; Tang, Y.; Gu, Z.; Wang, P.; Chen, X.; Lv, H.; Li, P.; Jiang, Q.; Gu, N.; Ren, S.; et al. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science 2024, 383, 1492–1498.
- Wang, L.; Li, R. A more biofriendly piezoelectric material. Science 2024, 383, 1416.
- Wang, Y.; Liu, S.; Li, L.; Li, H.; Yin, Y.; Rencus-Lazar, S.; Guerin, S.; Ouyang, W.; Thompson, D.; Yang, R.; et al. Manipulating the piezoelectric response of amino acid-based assemblies by supramolecular engineering. J. Am. Chem. Soc. 2023, 145, 15331–15342.
- Guerin, S.; Stapleton, A.; Chovan, D.; Mouras, R.; Gleeson, M.; McKeown, C.; Noor, M.R.; Silien, C.; Rhen, F.M.F.; Kholkin, A.L.; et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 2018, 17, 180–186.
- Sharafkhani, S. Highly aligned thin PVDF/Cloisite 30B nanofibers as a piezoelectric sensor. Mater. Res. Bull. 2024, 180, 113060.
- Wang, S.; Tang, C.-Y.; Jia, J.; Zha, X.-J.; Liu, J.-H.; Zhao, X.; Ke, K.; Wang, Y.; Yang, W. Liquid electrolyte-assisted electrospinning for boosting piezoelectricity of poly (vinylidene fluoride) fiber mats. Macromolecules 2023, 56, 7479–7489.
- Zheng, W.; Li, T.; Jin, F.; Qian, L.; Ma, J.; Wei, Z.; Ma, X.; Wang, F.; Sun, J.; Yuan, T.; et al. Interfacial polarization locked flexible beta-phase glycine/Nb2CTx piezoelectric nanofibers. Small 2024, 20, 2308715.
- Hou, L.; Huan, Y.; Zheng, M.; Liu, Y.; Wang, C.; Wang, X.; Li, C.; Wang, Z.; Wei, T. 3D vertically aligned microchannel structure to enhance piezoelectric energy harvesting performance of PZT/PVDF&CNTs piezoelectric composites. J. Mater. 2024, 10, 1063–1070.
- Wei, X.; Xu, K.; Wang, Y.; Zhang, Z.; Chen, Z. 3D Printing of flexible BaTiO3/polydimethylsiloxane piezocomposite with aligned particles for enhanced energy harvesting. ACS Appl. Mater. Interfaces 2024, 16, 11740–11748.
- Pawar, O.Y.; Lim, S. 3D-Printed piezoelectric nanogenerator with aligned graphitic carbon nitrate nanosheets for enhancing piezoelectric performance. J. Colloid. Interface Sci. 2024, 654, 868–877.
- Tavares, C.; Vieira, T.; Silva, J.C.; Borges, J.; Lanca, M.C. Bioactive hydroxyapatite aerogels with piezoelectric particles. Biomimetics 2024, 9, 143.
- Fan, W.; Lei, R.; Dou, H.; Wu, Z.; Lu, L.; Wang, S.; Liu, X.; Chen, W.; Rezakazemi, M.; Aminabhavi, T.M.; et al. Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 2024, 15, 3509.
- Chen, K.; Qin, Z.; Zhang, M.; Wang, L.; Zheng, S.; Wang, Y.; Chen, C.; Tang, H.; Zhong, Y.; Yang, H.; et al. The electrical properties and in vitro osteogenic properties of 3D-printed MgO@BT/HA piezoelectric ceramic disk. J. Am. Ceram. Soc. 2024, 107, 7441–7451.
- Zhang, W.; Peng, Z.; Xia, H.; Ma, L.; Qiu, L.; Yan, X.; Gao, Y.; Yang, X.; Yang, Z. Long-lifespan and sterilizable face masks leveraging the power of light and electricity. Sep. Purif. Technol. 2025, 354, 128697.
- Kaarthik, J.; Ram, N.; Pabba, D.P.; Reddy, S.G.; Venkateswarlu, A. Optimization of structural, dielectric, and electrical properties in lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 through site engineering for biocompatible energy harvesting. Mater. Today Commun. 2024, 41, 110441.
- Zhang, S.; Chen, D.; Gu, Z.; Luo, H.; Chen, X.; Fu, Q. Ultrasound-triggerennd piezocatalytic conductive Guar gum/PEDOT: PSS/BTO composite hydrogels for bacterial-infected skin wound healing. Nano TransMed 2024, 3, 100035.
- Li, Y.; Fan, Y.; Zhao, S.; Cheng, B. Ultrasound-triggered piezoelectric polyetheretherketone with boosted osteogenesis via regulating Akt/GSK3β/β-catenin pathway. J. Nanobiotechnology 2024, 22, 539.
- Chen, Y.; Guan, H.; Wang, X.; Wen, Y.; He, Q.; Lin, R.; Yang, Z.; Wang, S.; Zhu, X.; Zhong, T.; et al. Implantable and wireless-controlled antibacterial patch for deep abscess eradication and therapeutic efficacy monitoring. Nano Energy 2024, 131, 110193.
- Hu, C.; Liu, B.; Huang, X.; Wang, Z.; Qin, K.; Sun, L.; Fan, Z. Sea cucumber-inspired microneedle nerve guidance conduit for synergistically inhibiting muscle atrophy and promoting nerve regeneration. ACS Nano 2024, 18, 14427–14440.
- Zhang, M.; Yang, G.; Long, Z.; Tang, Y.; Li, D.; Liang, S.; Lin, R.; Yang, Z.; Bao, H.; Xing, L.; et al. Wireless battery-free peripheral nerve stimulation conch for remote muscle activation. Adv. Mater. Technol. 2024, 9, 2301458.
- Liu, H.; Ding, S.; Lin, X.; Wang, S.; Wang, Y.; Feng, Z.; Song, J. Bone fracture healing under the intervention of a stretchable ultrasound array. ACS Nano 2024, 18, 19549–19560.
- Chen, Y.; An, Q.; Hu, X.; Zhao, R.; Teng, K.; Zhang, Y.; Zhao, Y. Effective scald wound functional recovery patch achieved by molecularly intertwined electrical and chemical message in self-adhesive assemblies. ACS Appl. Mater. Interfaces 2023, 15, 38346–38356.
- Wang, W.; Wang, P.; Li, Q.; Dai, W.; Yi, B.; Gao, Z.; Liu, W.; Wang, X. Piezoelectrically-enhanced composite membranes mimicking the tendinous electrical microenvironment for advanced tendon repair. Nano Today 2024, 57, 102381.
- Li, Z.; Wang, X.; Zhao, Z.; Liu, Y. A conductive piezoelectric hydrogel combined with perampanel and wireless electrical stimulation for spinal cord injury repair. Chem. Eng. J. 2024, 493, 152238.
- Li, Z.; He, D.; Guo, B.; Wang, Z.; Yu, H.; Wang, Y.; Jin, S.; Yu, M.; Zhu, L.; Chen, L.; et al. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat. Commun. 2023, 14, 6963.
- George, L.; Bates, E. Mechanisms underlying influence of bioelectricity in development. Front. Cell Dev. Biol. 2022, 10, 772230.
- Mycielska, M.; Djamgoz, M. Cellular mechanisms of direct-current electric field effects: Galvanotaxis and metastatic disease. J. Cell Sci. 2004, 117, 1631–1639.
- Wehrle-Haller, B.; Imhof, B. Actin, microtubules and focal adhesion dynamics during cell migration. Int. J. Biochem. Cell Biol. 2003, 35, 39–50.
- Zhao, H.; Steiger, A.; Nohner, M.; Ye, H. Specific intensity direct current (DC) electric field improves neural stem cell migration and enhances differentiation towards βIII-tubulin+ neurons. PLoS ONE 2015, 10, e0129625.
- Xu, Q.; Dai, W.; Li, P.; Li, Q.; Gao, Z.; Wu, X.; Liu, W.; Wang, W. Piezoelectric film promotes skin wound healing with enhanced collagen deposition and vessels regeneration via upregulation of PI3K/AKT. Nano Res. 2024, 17, 7461–7478.
- Ke, Q.; Zhang, X.; Yang, Y.; Chen, Q.; Su, J.; Tang, Y.; Fang, L. Wearable magnetoelectric stimulation for chronic wound healing by electrospun CoFe2O4@CTAB/PVDF dressings. ACS Appl. Mater. Interfaces 2024, 16, 9839–9853.
- Pi, W.; Chen, H.; Liu, Y.; Xiang, J.; Zhang, H.; Yang, X.; Zhang, M.; Cao, J.; Chang, T.; Zheng, Y.; et al. Flexible sono-piezo patch for functional sweat gland repair through endogenous microenvironmental remodeling. ACS Nano 2024, 18, 20283–20295.
- Jin, F.; Li, T.; Yuan, T.; Du, L.; Lai, C.; Wu, Q.; Zhao, Y.; Sun, F.; Gu, L.; Wang, T.; et al. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Adv. Mater. 2021, 33, 2104175.
- Wang, Q.; Wei, Y.; Yin, X.; Zhan, G.; Cao, X.; Gao, H. Engineered PVDF/PLCL/PEDOT dual electroactive nerve conduit to mediate peripheral nerve regeneration by modulating the immune microenvironment. Adv. Funct. Mater. 2024, 34, 2400217.
- Liu, Y.; Zhang, Z.; Zhao, Z.; Xu, Y.; Duan, X.; Zhao, Y.; Ma, W.; Yang, Y.; Yang, Y.; Liu, Z. An easy nanopatch promotes peripheral nerve repair through wireless ultrasound-electrical stimulation in a band-aid-like way. Adv. Funct. Mater. 2024, 34, 2407411.
- Yu, C.C.; Shah, A.; Amiri, N.; Marcus, C.; Nayeem, M.O.G.; Bhayadia, A.K.; Karami, A.; Dagdeviren, C. A conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. Adv. Mater. 2023, 35, e2300066.
- Huang, R.; Lin, C.; Jiang, G.; Zhang, M.; Gao, W.; Aihemaiti, K.; Liu, Q.; Shi, J.; Shi, W.; Huang, R. BBB-penetrating magnetoelectric nanoparticles with sustainable Gel formulation for enhanced chemotherapy and reduced postoperative glioma recurrence. Chem. Eng. J. 2024, 496, 154208.
- Wang, Y.; Tang, Q.; Wu, R.; Sun, S.; Zhang, J.; Chen, J.; Gong, M.; Chen, C.; Liang, X. Ultrasound-triggered piezocatalysis for selectively controlled no gas and chemodrug release to enhance drug penetration in pancreatic cancer. ACS Nano 2023, 17, 3557–3573.
- Van Neer, P.; Peters, L.; Verbeek, R.; Peeters, B.; de Haas, G.; Horchens, L.; Fillinger, L.; Schrama, T.; Merks-Swolfs, E.J.W.; Gijsbertse, K.; et al. Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures. Nat. Commun. 2024, 15, 2802.
- Chen, J.X.; Li, J.W.; Jiang, Z.J.; Chiu, C.W. Polymer-assisted dispersion of reduced graphene oxide in electrospun polyvinylidene fluoride nanofibers for enhanced piezoelectric monitoring of human body movement. Chem. Eng. J. 2024, 498, 155244.
- Das, T.; Kumar Yadav, M.; Dev, A.; Kar, M. Double perovskite-based wearable ternary nanocomposite piezoelectric nanogenerator for self-charging, human health monitoring and temperature sensor. Chem. Eng. J. 2024, 496, 153926.
- Zhang, L.; Marcus, C.; Lin, D.; Mejorado, D.; Schoen, S.J.; Pierce, T.; Kumar, V.; Fernandez, S.; Hunt, D.; Li, Q.; et al. A conformable phased-array ultrasound patch for bladder volume monitoring. Nat. Electron. 2024, 7, 77–90.
- Kim, M.; Joe, D.J.; Doh, I.; Cho, Y.H. Piezoelectric nanocomposite-based multifunctional wearable bioelectronics for mental stress analysis utilizing physiological signals. Adv. Mater. Technol. 2024, 9, 2301610.
- Jeong, J.S.; Chang, J.H.; Shung, K.K. Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 9, 1913–1922.
- Wan, Y.; Ebbini, E.S. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 8, 1705–1718.
- Ebbini, E.S.; Yao, H.; Shrestha, A. Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason. Imaging 2006, 28, 65–82.
- Voignac, D.; Belsey, S.; Wermter, E.; Paltiel, Y.; Shoseyov, O. Biobased electronics: Tunable dielectric and piezoelectric cellulose nanocrystal-protein films. Nanomaterials 2023, 13, 2258.
- Zhang, Y.; Li, Q.; Wu, H.; Wang, Y.; Wang, Y.; Rencus-Lazar, S.; Zhao, Y.; Wang, J.; Mei, D.; Xu, H.; et al. Racemic amino acid assembly enables supramolecular beta-sheet transition with property modulations. ACS Nano 2023, 17, 2737–2744.
- Ding, C.; Lin, Y.; Cheng, N.; Meng, N.; Wang, X.; Yin, X.; Yu, J.; Ding, B. Dual-cooling textile enables vertical heat dissipation and sweat evaporation for thermal and moisture regulation. Adv. Funct. Mater. 2024, 34, 2400987.
- Fan, W.; Zhang, C.; Liu, Y.; Wang, S.; Dong, K.; Li, Y.; Wu, F.; Liang, J.; Wang, C.; Zhang, Y. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Res. 2023, 16, 11612–11620.
- Kwon, S.H.; Zhang, C.; Jiang, Z.; Dong, L. Textured nanofibers inspired by nature for harvesting biomechanical energy and sensing biophysiological signals. Nano Energy 2024, 122, 109334.
- Habib, M.; Lantgios, I.; Hornbostel, K. A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D: Appl. Phys. 2022, 55, 423002.
- Zhao, K.; Zheng, M.; Yan, X.; Zhu, M.; Hou, Y. Effect of direct current and alternating current poling on the piezoelectric properties of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J. Mater. Sci: Mater. Electron. 2021, 32, 27815–27822.
- Kim, H.; Wan, H.; Luo, C.; Sun, Y.; Yamashita, Y.; Karaki, T.; Lee, H.; Jiang, X. A review on alternating current poling for perovskite relaxor-PbTiO3 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3037–3047.
- Hong, C.; Wang, Z.; Su, B.; Guo, L.; Yang, X.; Long, X.; He, C. Enhanced piezoelectric and dielectric properties of Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by combining alternating and direct current poling. J. Appl. Phys. 2021, 129, 124101.