Downloads
Download




This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Polymer-Patched Plasmonic Nanoparticles
Chansong Kim 1, Xiaoying Lin 1, Jiyeon Kim 1, Yangming Wang 1, and Qian Chen 1,2,3,4,*
1 Department of Materials Science and Engineering, the Grainger College of Engineering, University of Illinois,
Urbana, IL 61801, USA
2 Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
3 Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
4 Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA
* Correspondence: qchen20@illinois.edu
Received: 3 March 2025; Revised: 22 March 2025; Accepted: 25 March 2025; Published: 29 March 2025
Abstract: In this work, we discuss advancements at the intersection of surface patchiness design and plasmonic nanoparticles. Surface patchiness design, inspired by nature’s strategy to encode complex functions by spatially distributed surface patterns, has become increasingly popular in nanoparticle research. The surface patterns lead to their nonuniformity in chemical and physical properties, enabling not only their application as functional hybrid nanomaterials but as building blocks for self-assembly through directional interactions for applications in catalysis, biomedicine, sensing, robotics, and metamaterials. When surface patchiness design is implemented on plasmonic nanoparticles, interesting coupling of plasmonic resonance emerges from self-assembly structures not easily available from non-patchy nanoparticles. This direction is rapidly evolving and we review efforts in the synthesis, self-assembly, and applications of plasmonic patchy nanoparticles. We conclude with outlook discussions of the future opportunities of this field.
Keywords:
patchy nanoparticles plasmonic particles polymer ligands surface chemistry self-assembly
References
- Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252. doi: 10.1038/s41467-018-03666-2
- Lyu, Z.; Shang, Y.; Xia, Y. Shape-controlled synthesis of copper nanocrystals for plasmonic, biomedical, and electrocatalytic applications. Acc. Mater. Res. 2022, 3, 1137–1148. doi: 10.1021/accountsmr.2c00134
- Miller, M.A.; Askevold, B.; Mikula, H.; Kohler, R.H.; Pirovich, D.; Weissleder, R. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. 2017, 8, 15906. doi: 10.1038/ncomms15906
- Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. doi: 10.1038/nmat1251
- Murray, W.A.; Barnes, W.L. Plasmonic materials. Adv. Mater. 2007, 19, 3771–3782. doi: 10.1002/adma.200700678
- Zheng, J.; Cheng, X.; Zhang, H.; Bai, X.; Ai, R.; Shao, L.; Wang, J. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453. doi: 10.1021/acs.chemrev.1c00422
- Lee, H.-E.; Yang, K.D.; Yoon, S.M.; Ahn, H.-Y.; Lee, Y.Y.; Chang, H.; Jeong, D.H.; Lee, Y.-S.; Kim, M.Y.; Nam, K.T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 2015, 9, 8384–8393. doi: 10.1021/acsnano.5b03065
- Hang, Y.; Wang, A.; Wu, N. Plasmonic silver and gold nanoparticles: Shape-and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. doi: 10.1039/D3CS00793F
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. doi: 10.1039/C1CS15237H
- García-Lojo, D.; Núñez-Sánchez, S.; Gómez-Graña, S.; Grzelczak, M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M. Plasmonic supercrystals. Acc. Chem. Res. 2019, 52, 1855–1864. doi: 10.1021/acs.accounts.9b00213
- Sönnichsen, C.; Reinhard, B.M.; Liphardt, J.; Alivisatos, A.P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745. doi: 10.1038/nbt1100
- Tabor, C.; Murali, R.; Mahmoud, M.; El-Sayed, M.A. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A 2009, 113, 1946–1953. doi: 10.1021/jp807904s
- Kim, J.; Ou, Z.; Jones, M.R.; Song, X.; Chen, Q. Imaging the polymerization of multivalent nanoparticles in solution. Nat. Commun. 2017, 8, 761. doi: 10.1038/s41467-017-00857-1
- Wittmeier, A.; Leeth Holterhoff, A.; Johnson, J.; Gibbs, J.G. Rotational analysis of spherical, optically anisotropic janus particles by dynamic microscopy. Langmuir 2015, 31, 10402–10410. doi: 10.1021/acs.langmuir.5b02864
- Han, M.; Yildiz, E.; Bozuyuk, U.; Aydin, A.; Yu, Y.; Bhargava, A.; Karaz, S.; Sitti, M. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat. Commun. 2024, 15, 2013. doi: 10.1038/s41467-024-46245-4
- Chen, Q.; Bae, S.C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381–384. doi: 10.1038/nature09713
- Wang, Y.; Hollingsworth, A.D.; Yang, S.K.; Patel, S.; Pine, D.J.; Weck, M. Patchy particle self-assembly via metal coordination. J. Am. Chem. Soc. 2013, 135, 14064–14067. doi: 10.1021/ja4075979
- Garbuzenko, O.B.; Winkler, J.; Tomassone, M.S.; Minko, T. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir 2014, 30, 12941–12949. doi: 10.1021/la502144z
- Luong, H.M.; Pham, M.T.; Guin, T.; Madhogaria, R.P.; Phan, M.-H.; Larsen, G.K.; Nguyen, T.D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414. doi: 10.1038/s41467-021-22697-w
- Archer, R.J.; Parnell, A.J.; Campbell, A.I.; Howse, J.R.; Ebbens, S.J. A Pickering emulsion route to swimming active Janus colloids. Adv. Sci. 2018, 5, 1700528. doi: 10.1002/advs.201700528
- Lyu, Z.; Yao, L.; Wang, Z.; Qian, C.; Wang, Z.; Li, J.; Liu, C.; Wang, Y.; Chen, Q. Nanoscopic imaging of self-propelled ultrasmall catalytic nanomotors. ACS Nano 2024, 18, 14231–14243. doi: 10.1021/acsnano.3c12590
- Wang, X.; Liu, B. Molecular alignment-induced chemically patchy uniaxial nanoparticles and their applications in anti-counterfeiting and self-assembled superstructures. Angew. Chem. Int. Ed. 2023, 62, e202218399. doi: 10.1002/anie.202218399
- Cao, Q.; Han, S.-J.; Tersoff, J.; Franklin, A.D.; Zhu, Y.; Zhang, Z.; Tulevski, G.S.; Tang, J.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72. doi: 10.1126/science.aac8006
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. doi: 10.1038/nprot.2009.234
- Suh, H.S.; Kim, D.H.; Moni, P.; Xiong, S.; Ocola, L.E.; Zaluzec, N.J.; Gleason, K.K.; Nealey, P.F. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol. 2017, 12, 575–581. doi: 10.1038/nnano.2017.34
- De Gennes, P. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979.
- Choueiri, R.M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernández, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83. doi: 10.1038/nature19089
- Galati, E.; Tao, H.; Tebbe, M.; Ansari, R.; Rubinstein, M.; Zhulina, E.B.; Kumacheva, E. Helicoidal patterning of nanorods with polymer ligands. Angew. Chem. Int. Ed. 2019, 58, 3123–3127. doi: 10.1002/anie.201812887
- Galati, E.; Tebbe, M.; Querejeta-Fernández, A.; Xin, H.L.; Gang, O.; Zhulina, E.B.; Kumacheva, E. Shape-specific patterning of polymer-functionalized nanoparticles. ACS Nano 2017, 11, 4995–5002. doi: 10.1021/acsnano.7b01669
- Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Spatially-directed oxidation of gold nanoparticles by Au(III)−CTAB complexes. J. Phys. Chem. B 2005, 109, 14257–14261. doi: 10.1021/jp052516g
- Schlenoff, J.B.; Li, M.; Ly, H. Stability and self-exchange in alkanethiol monolayers. J. Am. Chem. Soc. 1995, 117, 12528–12536. doi: 10.1021/ja00155a016
- Yang, G.; Amro, N.A.; Starkewolfe, Z.B.; Liu, G.-y. Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media. Langmuir 2004, 20, 3995–4003. doi: 10.1021/la0499160
- Galati, E.; Tao, H.; Rossner, C.; Zhulina, E.B.; Kumacheva, E. Morphological transitions in patchy nanoparticles. ACS Nano 2020, 14, 4577–4584. doi: 10.1021/acsnano.0c00108
- Rossner, C.; Zhulina, E.B.; Kumacheva, E. Staged surface patterning and self-assembly of nanoparticles functionalized with end-grafted block copolymer ligands. Angew. Chem. Int. Ed. 2019, 58, 9269–9274. doi: 10.1002/anie.201904430
- Duan, H.; Luo, Q.; Wei, Z.; Lin, Y.; He, J. Symmetry-broken patches on gold nanoparticles through deficient ligand exchange. ACS Macro Lett. 2021, 10, 786–790. doi: 10.1021/acsmacrolett.1c00252
- Duan, H.; Malesky, T.; Wang, J.; Liu, C.-H.; Tan, H.; Nieh, M.-P.; Lin, Y.; He, J. Patchy metal nanoparticles with polymers: Controllable growth and two-way self-assembly. Nanoscale 2022, 14, 7364–7371. doi: 10.1039/D2NR01221A
- Duan, H.; Jia, Z.; Liaqat, M.; Mellor, M.D.; Tan, H.; Nieh, M.-P.; Lin, Y.; Link, S.; Landes, C.F.; He, J. Site-specific chemistry on gold nanorods: Curvature-guided surface dewetting and supracolloidal polymerization. ACS Nano 2023, 17, 12788–12797. doi: 10.1021/acsnano.3c03929
- Yang, Y.; Yi, C.; Duan, X.; Wu, Q.; Zhang, Y.; Tao, J.; Dong, W.; Nie, Z. Block-random copolymer-micellization-mediated formation of polymeric patches on gold nanoparticles. J. Am. Chem. Soc. 2021, 143, 5060–5070. doi: 10.1021/jacs.1c00310
- Singh, C.; Ghorai, P.K.; Horsch, M.A.; Jackson, A.M.; Larson, R.G.; Stellacci, F.; Glotzer, S.C. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys. Rev. Lett. 2007, 99, 226106. doi: 10.1103/PhysRevLett.99.226106
- Ghorai, P.K.; Glotzer, S.C. Atomistic simulation study of striped phase separation in mixed-ligand self-assembled monolayer coated nanoparticles. J. Phys. Chem. C 2010, 114, 19182–19187. doi: 10.1021/jp105013k
- Chen, T.; Yang, M.; Wang, X.; Tan, L.H.; Chen, H. Controlled assembly of eccentrically encapsulated gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 11858–11859. doi: 10.1021/ja8040288
- Chen, G.; Gibson, K.J.; Liu, D.; Rees, H.C.; Lee, J.-H.; Xia, W.; Lin, R.; Xin, H.L.; Gang, O.; Weizmann, Y. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 2019, 18, 169–174. doi: 10.1038/s41563-018-0231-1
- Tao, H.; Chen, L.; Galati, E.; Manion, J.G.; Seferos, D.S.; Zhulina, E.B.; Kumacheva, E. Helicoidal patterning of gold nanorods by phase separation in mixed polymer brushes. Langmuir 2019, 35, 15872–15879. doi: 10.1021/acs.langmuir.9b02001
- Song, X.; Zhang, X.; Ou, Z.; Zhang, Y.-Q.; Li, M. Controlling the anisotropic surface wetting of metal nanoparticles by a competitive ligand packing strategy: Implications for encapsulation. ACS Appl. Nano Mater. 2021, 4, 11458–11465. doi: 10.1021/acsanm.1c02276
- Zhou, J.; Creyer, M.N.; Chen, A.; Yim, W.; Lafleur, R.P.; He, T.; Lin, Z.; Xu, M.; Abbasi, P.; Wu, J. Stereoselective growth of small molecule patches on nanoparticles. J. Am. Chem. Soc. 2021, 143, 12138–12144. doi: 10.1021/jacs.1c04272
- Wang, Z.; He, B.; Xu, G.; Wang, G.; Wang, J.; Feng, Y.; Su, D.; Chen, B.; Li, H.; Wu, Z. Transformable masks for colloidal nanosynthesis. Nat. Commun. 2018, 9, 563. doi: 10.1038/s41467-018-02958-x
- Song, X.; Liu, C.; Liu, X.; Liu, S. Investigating polymer transformation during the encapsulation of metal nanoparticles by polystyrene-b-poly(acrylic acid) in colloids. ACS Appl. Mater. Interfaces 2019, 12, 3969–3975. doi: 10.1021/acsami.9b19264
- Kim, J.; Song, X.; Kim, A.; Luo, B.; Smith, J.W.; Ou, Z.; Wu, Z.; Chen, Q. Reconfigurable polymer shells on shape-anisotropic gold nanoparticle cores. Macromol. Rapid Commun. 2018, 39, 1800101. doi: 10.1002/marc.201800101
- Santos, A.; Millan, J.A.; Glotzer, S.C. Facetted patchy particles through entropy-driven patterning of mixed ligand SAMS. Nanoscale 2012, 4, 2640–2650. doi: 10.1039/c2nr11737a
- Kim, A.; Zhou, S.; Yao, L.; Ni, S.; Luo, B.; Sing, C.E.; Chen, Q. Tip-patched nanoprisms from formation of ligand islands. J. Am. Chem. Soc. 2019, 141, 11796–11800. doi: 10.1021/jacs.9b05312
- Kim, A.; Vo, T.; An, H.; Banerjee, P.; Yao, L.; Zhou, S.; Kim, C.; Milliron, D.J.; Glotzer, S.C.; Chen, Q. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. Nat. Commun. 2022, 13, 6774. doi: 10.1038/s41467-022-34246-0
- Yao, L.; An, H.; Zhou, S.; Kim, A.; Luijten, E.; Chen, Q. Seeking regularity from irregularity: Unveiling the synthesis–nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning. Nanoscale 2022, 14, 16479–16489. doi: 10.1039/D2NR03712B
- Kherbouche, I.; MacRae, D.; Jourdain, T.G.; Lagugné-Labarthet, F.; Lamouri, A.; Biraud, A.C.; Mangeney, C.; Félidj, N. Extending nanoscale patterning with multipolar surface plasmon resonances. Nanoscale 2021, 13, 11051–11057. doi: 10.1039/D1NR02181H
- Ji, Y.; Lin, X.; Wu, Z.; Wu, Y.; Gao, W.; He, Q. Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew. Chem. Int. Ed. 2019, 58, 12200–12205. doi: 10.1002/anie.201907733
- Ohnuma, A.; Cho, E.C.; Camargo, P.H.; Au, L.; Ohtani, B.; Xia, Y. A facile synthesis of asymmetric hybrid colloidal particles. J. Am. Chem. Soc. 2009, 131, 1352–1353. doi: 10.1021/ja8079934
- Ohnuma, A.; Cho, E.C.; Jiang, M.; Ohtani, B.; Xia, Y. Metal−polymer hybrid colloidal particles with an eccentric structure. Langmuir 2009, 25, 13880–13887. doi: 10.1021/la9015146
- Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G.C.; Rubinstein, M. Self-assembly of metal−polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614. doi: 10.1038/nmat1954
- Kim, A.; Akkunuri, K.; Qian, C.; Yao, L.; Sun, K.; Chen, Z.; Vo, T.; Chen, Q. Direct imaging of “patch-clasping” and relaxation in robust and flexible nanoparticle assemblies. ACS Nano 2024, 18, 939–950. doi: 10.1021/acsnano.3c09710
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2016. doi: 10.1201/9781315274287
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011.
- Li, Y.; Zhou, W.; Tanriover, I.; Hadibrata, W.; Partridge, B.E.; Lin, H.; Hu, X.; Lee, B.; Liu, J.; Dravid, V.P. Open-channel metal particle superlattices. Nature 2022, 611, 695–701. doi: 10.1038/s41586-022-05291-y
- Dong, Y.; Liu, J.; Lu, X.; Duan, J.; Zhou, L.; Dai, L.; Ji, M.; Ma, N.; Wang, Y.; Wang, P. Two-stage assembly of nanoparticle superlattices with multiscale organization. Nano Lett. 2022, 22, 3809–3817. doi: 10.1021/acs.nanolett.2c00942
- Lewis, D.J.; Carter, D.J.; Macfarlane, R.J. Using DNA to control the mechanical response of nanoparticle superlattices. J. Am. Chem. Soc. 2020, 142, 19181–19188. doi: 10.1021/jacs.0c08790
- Lu, F.; Vo, T.; Zhang, Y.; Frenkel, A.; Yager, K.G.; Kumar, S.; Gang, O. Unusual packing of soft-shelled nanocubes. Sci. Adv. 2019, 5, eaaw2399. doi: 10.1126/sciadv.aaw2399
- Tan, L.H.; Xing, H.; Chen, H.; Lu, Y. Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. J. Am. Chem. Soc. 2013, 135, 17675–17678. doi: 10.1021/ja408033e
- Qiu, J.; Xie, M.; Lyu, Z.; Gilroy, K.D.; Liu, H.; Xia, Y. General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth. Nano Lett. 2019, 19, 6703–6708. doi: 10.1021/acs.nanolett.9b03167
- Woessner, Z.J.; Lewis, G.R.; Bueno, S.L.; Ringe, E.; Skrabalak, S.E. Asymmetric seed passivation for regioselective overgrowth and formation of plasmonic nanobowls. Nanoscale 2022, 14, 16918–16928. doi: 10.1039/D2NR05182F
- Huang, Z.; Liu, Y.; Zhang, Q.; Chang, X.; Li, A.; Deng, L.; Yi, C.; Yang, Y.; Khashab, N.M.; Gong, J.; et al. Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nat. Commun. 2016, 7, 12147. doi: 10.1038/ncomms12147
- Yan, M.; Liu, T.; Li, X.; Zhou, S.; Zeng, H.; Liang, Q.; Liang, K.; Wei, X.; Wang, J.; Gu, Z. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J. Am. Chem. Soc. 2022, 144, 7778–7789. doi: 10.1021/jacs.2c01096
- Li, L.; Yang, Y.; Ding, J.; Xue, J. Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem. Mater. 2010, 22, 3183–3191. doi: 10.1021/cm100289d
- Coropceanu, I.; Rossinelli, A.; Caram, J.R.; Freyria, F.S.; Bawendi, M.G. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer. ACS Nano 2016, 10, 3295–3301. doi: 10.1021/acsnano.5b06772
- Chen, W.; Zhan, X.; Luo, B.; Ou, Z.; Shih, P.-C.; Yao, L.; Pidaparthy, S.; Patra, A.; An, H.; Braun, P.V. Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 2019, 19, 4712–4720. doi: 10.1021/acs.nanolett.9b01780
- Cargnello, M.; Wieder, N.L.; Canton, P.; Montini, T.; Giambastiani, G.; Benedetti, A.; Gorte, R.J.; Fornasiero, P. A versatile approach to the synthesis of functionalized thiol-protected palladium nanoparticles. Chem. Mater. 2011, 23, 3961–3969. doi: 10.1021/cm2014658
- Wang, Y.; Im, J.; Soares, J.W.; Steeves, D.M.; Whitten, J.E. Thiol adsorption on and reduction of copper oxide particles and surfaces. Langmuir 2016, 32, 3848–3857. doi: 10.1021/acs.langmuir.6b00651
- Melby, E.S.; Lohse, S.E.; Park, J.E.; Vartanian, A.M.; Putans, R.A.; Abbott, H.B.; Hamers, R.J.; Murphy, C.J.; Pedersen, J.A. Cascading effects of nanoparticle coatings: Surface functionalization dictates the assemblage of complexed proteins and subsequent interaction with model cell membranes. ACS Nano 2017, 11, 5489–5499. doi: 10.1021/acsnano.7b00231
- Na, H.B.; Palui, G.; Rosenberg, J.T.; Ji, X.; Grant, S.C.; Mattoussi, H. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 2012, 6, 389–399. doi: 10.1021/nn203735b