Downloads

Kim, C., Lin, X., Kim, J., Wang, Y., & Chen, Q. Polymer-Patched Plasmonic Nanoparticles. Materials and Interfaces. 2025, 2(1), 105–129. doi: https://doi.org/10.53941/mi.2025.100010

Review

Polymer-Patched Plasmonic Nanoparticles

Chansong Kim 1, Xiaoying Lin 1, Jiyeon Kim 1, Yangming Wang 1, and Qian Chen 1,2,3,4,*

1 Department of Materials Science and Engineering, the Grainger College of Engineering, University of Illinois,
Urbana, IL 61801, USA

2 Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA

3 Department of Chemistry, University of Illinois, Urbana, IL 61801, USA

4 Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA

* Correspondence: qchen20@illinois.edu

Received: 3 March 2025; Revised: 22 March 2025; Accepted: 25 March 2025; Published: 29 March 2025

Abstract: In this work, we discuss advancements at the intersection of surface patchiness design and plasmonic nanoparticles. Surface patchiness design, inspired by nature’s strategy to encode complex functions by spatially distributed surface patterns, has become increasingly popular in nanoparticle research. The surface patterns lead to their nonuniformity in chemical and physical properties, enabling not only their application as functional hybrid nanomaterials but as building blocks for self-assembly through directional interactions for applications in catalysis, biomedicine, sensing, robotics, and metamaterials. When surface patchiness design is implemented on plasmonic nanoparticles, interesting coupling of plasmonic resonance emerges from self-assembly structures not easily available from non-patchy nanoparticles. This direction is rapidly evolving and we review efforts in the synthesis, self-assembly, and applications of plasmonic patchy nanoparticles. We conclude with outlook discussions of the future opportunities of this field.

Keywords:

patchy nanoparticles plasmonic particles polymer ligands surface chemistry self-assembly

References

  1. Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252. doi: 10.1038/s41467-018-03666-2
  2. Lyu, Z.; Shang, Y.; Xia, Y. Shape-controlled synthesis of copper nanocrystals for plasmonic, biomedical, and electrocatalytic applications. Acc. Mater. Res. 2022, 3, 1137–1148. doi: 10.1021/accountsmr.2c00134
  3. Miller, M.A.; Askevold, B.; Mikula, H.; Kohler, R.H.; Pirovich, D.; Weissleder, R. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. 2017, 8, 15906. doi: 10.1038/ncomms15906
  4. Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. doi: 10.1038/nmat1251
  5. Murray, W.A.; Barnes, W.L. Plasmonic materials. Adv. Mater. 2007, 19, 3771–3782. doi: 10.1002/adma.200700678
  6. Zheng, J.; Cheng, X.; Zhang, H.; Bai, X.; Ai, R.; Shao, L.; Wang, J. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453. doi: 10.1021/acs.chemrev.1c00422
  7. Lee, H.-E.; Yang, K.D.; Yoon, S.M.; Ahn, H.-Y.; Lee, Y.Y.; Chang, H.; Jeong, D.H.; Lee, Y.-S.; Kim, M.Y.; Nam, K.T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 2015, 9, 8384–8393. doi: 10.1021/acsnano.5b03065
  8. Hang, Y.; Wang, A.; Wu, N. Plasmonic silver and gold nanoparticles: Shape-and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. doi: 10.1039/D3CS00793F
  9. Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. doi: 10.1039/C1CS15237H
  10. García-Lojo, D.; Núñez-Sánchez, S.; Gómez-Graña, S.; Grzelczak, M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M. Plasmonic supercrystals. Acc. Chem. Res. 2019, 52, 1855–1864. doi: 10.1021/acs.accounts.9b00213
  11. Sönnichsen, C.; Reinhard, B.M.; Liphardt, J.; Alivisatos, A.P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745. doi: 10.1038/nbt1100
  12. Tabor, C.; Murali, R.; Mahmoud, M.; El-Sayed, M.A. On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A 2009, 113, 1946–1953. doi: 10.1021/jp807904s
  13. Kim, J.; Ou, Z.; Jones, M.R.; Song, X.; Chen, Q. Imaging the polymerization of multivalent nanoparticles in solution. Nat. Commun. 2017, 8, 761. doi: 10.1038/s41467-017-00857-1
  14. Wittmeier, A.; Leeth Holterhoff, A.; Johnson, J.; Gibbs, J.G. Rotational analysis of spherical, optically anisotropic janus particles by dynamic microscopy. Langmuir 2015, 31, 10402–10410. doi: 10.1021/acs.langmuir.5b02864
  15. Han, M.; Yildiz, E.; Bozuyuk, U.; Aydin, A.; Yu, Y.; Bhargava, A.; Karaz, S.; Sitti, M. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat. Commun. 2024, 15, 2013. doi: 10.1038/s41467-024-46245-4
  16. Chen, Q.; Bae, S.C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381–384. doi: 10.1038/nature09713
  17. Wang, Y.; Hollingsworth, A.D.; Yang, S.K.; Patel, S.; Pine, D.J.; Weck, M. Patchy particle self-assembly via metal coordination. J. Am. Chem. Soc. 2013, 135, 14064–14067. doi: 10.1021/ja4075979
  18. Garbuzenko, O.B.; Winkler, J.; Tomassone, M.S.; Minko, T. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir 2014, 30, 12941–12949. doi: 10.1021/la502144z
  19. Luong, H.M.; Pham, M.T.; Guin, T.; Madhogaria, R.P.; Phan, M.-H.; Larsen, G.K.; Nguyen, T.D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414. doi: 10.1038/s41467-021-22697-w
  20. Archer, R.J.; Parnell, A.J.; Campbell, A.I.; Howse, J.R.; Ebbens, S.J. A Pickering emulsion route to swimming active Janus colloids. Adv. Sci. 2018, 5, 1700528. doi: 10.1002/advs.201700528
  21. Lyu, Z.; Yao, L.; Wang, Z.; Qian, C.; Wang, Z.; Li, J.; Liu, C.; Wang, Y.; Chen, Q. Nanoscopic imaging of self-propelled ultrasmall catalytic nanomotors. ACS Nano 2024, 18, 14231–14243. doi: 10.1021/acsnano.3c12590
  22. Wang, X.; Liu, B. Molecular alignment-induced chemically patchy uniaxial nanoparticles and their applications in anti-counterfeiting and self-assembled superstructures. Angew. Chem. Int. Ed. 2023, 62, e202218399. doi: 10.1002/anie.202218399
  23. Cao, Q.; Han, S.-J.; Tersoff, J.; Franklin, A.D.; Zhu, Y.; Zhang, Z.; Tulevski, G.S.; Tang, J.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72. doi: 10.1126/science.aac8006
  24. Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. doi: 10.1038/nprot.2009.234
  25. Suh, H.S.; Kim, D.H.; Moni, P.; Xiong, S.; Ocola, L.E.; Zaluzec, N.J.; Gleason, K.K.; Nealey, P.F. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol. 2017, 12, 575–581. doi: 10.1038/nnano.2017.34
  26. De Gennes, P. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979.
  27. Choueiri, R.M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernández, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83. doi: 10.1038/nature19089
  28. Galati, E.; Tao, H.; Tebbe, M.; Ansari, R.; Rubinstein, M.; Zhulina, E.B.; Kumacheva, E. Helicoidal patterning of nanorods with polymer ligands. Angew. Chem. Int. Ed. 2019, 58, 3123–3127. doi: 10.1002/anie.201812887
  29. Galati, E.; Tebbe, M.; Querejeta-Fernández, A.; Xin, H.L.; Gang, O.; Zhulina, E.B.; Kumacheva, E. Shape-specific patterning of polymer-functionalized nanoparticles. ACS Nano 2017, 11, 4995–5002. doi: 10.1021/acsnano.7b01669
  30. Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Spatially-directed oxidation of gold nanoparticles by Au(III)−CTAB complexes. J. Phys. Chem. B 2005, 109, 14257–14261. doi: 10.1021/jp052516g
  31. Schlenoff, J.B.; Li, M.; Ly, H. Stability and self-exchange in alkanethiol monolayers. J. Am. Chem. Soc. 1995, 117, 12528–12536. doi: 10.1021/ja00155a016
  32. Yang, G.; Amro, N.A.; Starkewolfe, Z.B.; Liu, G.-y. Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media. Langmuir 2004, 20, 3995–4003. doi: 10.1021/la0499160
  33. Galati, E.; Tao, H.; Rossner, C.; Zhulina, E.B.; Kumacheva, E. Morphological transitions in patchy nanoparticles. ACS Nano 2020, 14, 4577–4584. doi: 10.1021/acsnano.0c00108
  34. Rossner, C.; Zhulina, E.B.; Kumacheva, E. Staged surface patterning and self-assembly of nanoparticles functionalized with end-grafted block copolymer ligands. Angew. Chem. Int. Ed. 2019, 58, 9269–9274. doi: 10.1002/anie.201904430
  35. Duan, H.; Luo, Q.; Wei, Z.; Lin, Y.; He, J. Symmetry-broken patches on gold nanoparticles through deficient ligand exchange. ACS Macro Lett. 2021, 10, 786–790. doi: 10.1021/acsmacrolett.1c00252
  36. Duan, H.; Malesky, T.; Wang, J.; Liu, C.-H.; Tan, H.; Nieh, M.-P.; Lin, Y.; He, J. Patchy metal nanoparticles with polymers: Controllable growth and two-way self-assembly. Nanoscale 2022, 14, 7364–7371. doi: 10.1039/D2NR01221A
  37. Duan, H.; Jia, Z.; Liaqat, M.; Mellor, M.D.; Tan, H.; Nieh, M.-P.; Lin, Y.; Link, S.; Landes, C.F.; He, J. Site-specific chemistry on gold nanorods: Curvature-guided surface dewetting and supracolloidal polymerization. ACS Nano 2023, 17, 12788–12797. doi: 10.1021/acsnano.3c03929
  38. Yang, Y.; Yi, C.; Duan, X.; Wu, Q.; Zhang, Y.; Tao, J.; Dong, W.; Nie, Z. Block-random copolymer-micellization-mediated formation of polymeric patches on gold nanoparticles. J. Am. Chem. Soc. 2021, 143, 5060–5070. doi: 10.1021/jacs.1c00310
  39. Singh, C.; Ghorai, P.K.; Horsch, M.A.; Jackson, A.M.; Larson, R.G.; Stellacci, F.; Glotzer, S.C. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys. Rev. Lett. 2007, 99, 226106. doi: 10.1103/PhysRevLett.99.226106
  40. Ghorai, P.K.; Glotzer, S.C. Atomistic simulation study of striped phase separation in mixed-ligand self-assembled monolayer coated nanoparticles. J. Phys. Chem. C 2010, 114, 19182–19187. doi: 10.1021/jp105013k
  41. Chen, T.; Yang, M.; Wang, X.; Tan, L.H.; Chen, H. Controlled assembly of eccentrically encapsulated gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 11858–11859. doi: 10.1021/ja8040288
  42. Chen, G.; Gibson, K.J.; Liu, D.; Rees, H.C.; Lee, J.-H.; Xia, W.; Lin, R.; Xin, H.L.; Gang, O.; Weizmann, Y. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 2019, 18, 169–174. doi: 10.1038/s41563-018-0231-1
  43. Tao, H.; Chen, L.; Galati, E.; Manion, J.G.; Seferos, D.S.; Zhulina, E.B.; Kumacheva, E. Helicoidal patterning of gold nanorods by phase separation in mixed polymer brushes. Langmuir 2019, 35, 15872–15879. doi: 10.1021/acs.langmuir.9b02001
  44. Song, X.; Zhang, X.; Ou, Z.; Zhang, Y.-Q.; Li, M. Controlling the anisotropic surface wetting of metal nanoparticles by a competitive ligand packing strategy: Implications for encapsulation. ACS Appl. Nano Mater. 2021, 4, 11458–11465. doi: 10.1021/acsanm.1c02276
  45. Zhou, J.; Creyer, M.N.; Chen, A.; Yim, W.; Lafleur, R.P.; He, T.; Lin, Z.; Xu, M.; Abbasi, P.; Wu, J. Stereoselective growth of small molecule patches on nanoparticles. J. Am. Chem. Soc. 2021, 143, 12138–12144. doi: 10.1021/jacs.1c04272
  46. Wang, Z.; He, B.; Xu, G.; Wang, G.; Wang, J.; Feng, Y.; Su, D.; Chen, B.; Li, H.; Wu, Z. Transformable masks for colloidal nanosynthesis. Nat. Commun. 2018, 9, 563. doi: 10.1038/s41467-018-02958-x
  47. Song, X.; Liu, C.; Liu, X.; Liu, S. Investigating polymer transformation during the encapsulation of metal nanoparticles by polystyrene-b-poly(acrylic acid) in colloids. ACS Appl. Mater. Interfaces 2019, 12, 3969–3975. doi: 10.1021/acsami.9b19264
  48. Kim, J.; Song, X.; Kim, A.; Luo, B.; Smith, J.W.; Ou, Z.; Wu, Z.; Chen, Q. Reconfigurable polymer shells on shape-anisotropic gold nanoparticle cores. Macromol. Rapid Commun. 2018, 39, 1800101. doi: 10.1002/marc.201800101
  49. Santos, A.; Millan, J.A.; Glotzer, S.C. Facetted patchy particles through entropy-driven patterning of mixed ligand SAMS. Nanoscale 2012, 4, 2640–2650. doi: 10.1039/c2nr11737a
  50. Kim, A.; Zhou, S.; Yao, L.; Ni, S.; Luo, B.; Sing, C.E.; Chen, Q. Tip-patched nanoprisms from formation of ligand islands. J. Am. Chem. Soc. 2019, 141, 11796–11800. doi: 10.1021/jacs.9b05312
  51. Kim, A.; Vo, T.; An, H.; Banerjee, P.; Yao, L.; Zhou, S.; Kim, C.; Milliron, D.J.; Glotzer, S.C.; Chen, Q. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. Nat. Commun. 2022, 13, 6774. doi: 10.1038/s41467-022-34246-0
  52. Yao, L.; An, H.; Zhou, S.; Kim, A.; Luijten, E.; Chen, Q. Seeking regularity from irregularity: Unveiling the synthesis–nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning. Nanoscale 2022, 14, 16479–16489. doi: 10.1039/D2NR03712B
  53. Kherbouche, I.; MacRae, D.; Jourdain, T.G.; Lagugné-Labarthet, F.; Lamouri, A.; Biraud, A.C.; Mangeney, C.; Félidj, N. Extending nanoscale patterning with multipolar surface plasmon resonances. Nanoscale 2021, 13, 11051–11057. doi: 10.1039/D1NR02181H
  54. Ji, Y.; Lin, X.; Wu, Z.; Wu, Y.; Gao, W.; He, Q. Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew. Chem. Int. Ed. 2019, 58, 12200–12205. doi: 10.1002/anie.201907733
  55. Ohnuma, A.; Cho, E.C.; Camargo, P.H.; Au, L.; Ohtani, B.; Xia, Y. A facile synthesis of asymmetric hybrid colloidal particles. J. Am. Chem. Soc. 2009, 131, 1352–1353. doi: 10.1021/ja8079934
  56. Ohnuma, A.; Cho, E.C.; Jiang, M.; Ohtani, B.; Xia, Y. Metal−polymer hybrid colloidal particles with an eccentric structure. Langmuir 2009, 25, 13880–13887. doi: 10.1021/la9015146
  57. Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G.C.; Rubinstein, M. Self-assembly of metal−polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614. doi: 10.1038/nmat1954
  58. Kim, A.; Akkunuri, K.; Qian, C.; Yao, L.; Sun, K.; Chen, Z.; Vo, T.; Chen, Q. Direct imaging of “patch-clasping” and relaxation in robust and flexible nanoparticle assemblies. ACS Nano 2024, 18, 939–950. doi: 10.1021/acsnano.3c09710
  59. Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2016. doi: 10.1201/9781315274287
  60. Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011.
  61. Li, Y.; Zhou, W.; Tanriover, I.; Hadibrata, W.; Partridge, B.E.; Lin, H.; Hu, X.; Lee, B.; Liu, J.; Dravid, V.P. Open-channel metal particle superlattices. Nature 2022, 611, 695–701. doi: 10.1038/s41586-022-05291-y
  62. Dong, Y.; Liu, J.; Lu, X.; Duan, J.; Zhou, L.; Dai, L.; Ji, M.; Ma, N.; Wang, Y.; Wang, P. Two-stage assembly of nanoparticle superlattices with multiscale organization. Nano Lett. 2022, 22, 3809–3817. doi: 10.1021/acs.nanolett.2c00942
  63. Lewis, D.J.; Carter, D.J.; Macfarlane, R.J. Using DNA to control the mechanical response of nanoparticle superlattices. J. Am. Chem. Soc. 2020, 142, 19181–19188. doi: 10.1021/jacs.0c08790
  64. Lu, F.; Vo, T.; Zhang, Y.; Frenkel, A.; Yager, K.G.; Kumar, S.; Gang, O. Unusual packing of soft-shelled nanocubes. Sci. Adv. 2019, 5, eaaw2399. doi: 10.1126/sciadv.aaw2399
  65. Tan, L.H.; Xing, H.; Chen, H.; Lu, Y. Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. J. Am. Chem. Soc. 2013, 135, 17675–17678. doi: 10.1021/ja408033e
  66. Qiu, J.; Xie, M.; Lyu, Z.; Gilroy, K.D.; Liu, H.; Xia, Y. General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth. Nano Lett. 2019, 19, 6703–6708. doi: 10.1021/acs.nanolett.9b03167
  67. Woessner, Z.J.; Lewis, G.R.; Bueno, S.L.; Ringe, E.; Skrabalak, S.E. Asymmetric seed passivation for regioselective overgrowth and formation of plasmonic nanobowls. Nanoscale 2022, 14, 16918–16928. doi: 10.1039/D2NR05182F
  68. Huang, Z.; Liu, Y.; Zhang, Q.; Chang, X.; Li, A.; Deng, L.; Yi, C.; Yang, Y.; Khashab, N.M.; Gong, J.; et al. Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nat. Commun. 2016, 7, 12147. doi: 10.1038/ncomms12147
  69. Yan, M.; Liu, T.; Li, X.; Zhou, S.; Zeng, H.; Liang, Q.; Liang, K.; Wei, X.; Wang, J.; Gu, Z. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J. Am. Chem. Soc. 2022, 144, 7778–7789. doi: 10.1021/jacs.2c01096
  70. Li, L.; Yang, Y.; Ding, J.; Xue, J. Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem. Mater. 2010, 22, 3183–3191. doi: 10.1021/cm100289d
  71. Coropceanu, I.; Rossinelli, A.; Caram, J.R.; Freyria, F.S.; Bawendi, M.G. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer. ACS Nano 2016, 10, 3295–3301. doi: 10.1021/acsnano.5b06772
  72. Chen, W.; Zhan, X.; Luo, B.; Ou, Z.; Shih, P.-C.; Yao, L.; Pidaparthy, S.; Patra, A.; An, H.; Braun, P.V. Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 2019, 19, 4712–4720. doi: 10.1021/acs.nanolett.9b01780
  73. Cargnello, M.; Wieder, N.L.; Canton, P.; Montini, T.; Giambastiani, G.; Benedetti, A.; Gorte, R.J.; Fornasiero, P. A versatile approach to the synthesis of functionalized thiol-protected palladium nanoparticles. Chem. Mater. 2011, 23, 3961–3969. doi: 10.1021/cm2014658
  74. Wang, Y.; Im, J.; Soares, J.W.; Steeves, D.M.; Whitten, J.E. Thiol adsorption on and reduction of copper oxide particles and surfaces. Langmuir 2016, 32, 3848–3857. doi: 10.1021/acs.langmuir.6b00651
  75. Melby, E.S.; Lohse, S.E.; Park, J.E.; Vartanian, A.M.; Putans, R.A.; Abbott, H.B.; Hamers, R.J.; Murphy, C.J.; Pedersen, J.A. Cascading effects of nanoparticle coatings: Surface functionalization dictates the assemblage of complexed proteins and subsequent interaction with model cell membranes. ACS Nano 2017, 11, 5489–5499. doi: 10.1021/acsnano.7b00231
  76. Na, H.B.; Palui, G.; Rosenberg, J.T.; Ji, X.; Grant, S.C.; Mattoussi, H. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 2012, 6, 389–399. doi: 10.1021/nn203735b