Downloads
Download
Additional Files
Download
- Supplementary Materials




This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Magnetically-Driven Reconfigurable Cilium Array with Tunable Wettability for Dynamic Display and Controllable Microreactio
Zijing Quan 1, Yuhan Zhang 1,*, You Pan 1, Zhongyi Yang 1, You Chen 1, Fawei Rui 1, Letian Li 1, Bo Li 1,2,*, Shichao Niu 1,2,3,*, Zhiwu Han 1,2,3, and Luquan Ren 1,2,3
1 Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
2 National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
3 Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
* Correspondence: yhzhang9922@mails.jlu.edu.cn (Y.Z.); boli@jlu.edu.cn (B.L.); niushichao@jlu.edu.cn (S.N.)
Received: 3 March 2025; Revised: 17 March 2025; Accepted: 25 March 2025; Published: 28 March 2025
Abstract: Efficient droplet transport plays an important role in many fields such as liquid collection, microfluidic management, and reaction control. However, it remains a key challenge to achieve fast and precise droplet motion control along a predetermined path. Herein, a magnetically driven cilium array (MDCA) was developed by a simple one-step spraying method. The MDCA exhibits both upright and prostrated states under a programmable magnetic field, achieving in-situ pinning and driving of the droplets, respectively. In particular, the MDCA modified by the silicone oil can not only be used for precise droplet manipulation on the spatio-temporal scale (S-shaped trajectory transport, selective control of target droplets, and velocity control) but also provides a self-enclosed space for droplet fusion for chemical microreactions, allowing fine-tuning of reaction parameters and isolation from external contamination. Based on the theoretical analysis of droplet transport, MDCA can be applied to the development of dynamic digital displays and chemical microreactors and provides inspiration for the development of environmental monitoring, drug delivery, and energy purification.
Keywords:
magnetically driven cilium array tunable wettability droplet motion control
References
- Zhou, M.; Wu, Z.; Zhao, Y.; Yang, Q.; Huang, X. Droplets as Carriers for Flexible Electronic Devices. Adv. Sci. 2019, 6, 1901862. https://doi.org/10.1002/advs.201901862.
- Li, J.; Han, X.; Li, W.; Yang, L.; Li, X.; Wang, L. Nature-Inspired Reentrant Surfaces. Prog. Mater. Sci. 2023, 133, 101064. https://doi.org/10.1016/j.pmatsci.2022.101064.
- Sun, Q.; Wang, D.; Li, Y.; Zhang, J.; Ye, S.; Cui, J.; Chen, L.; Wang, Z.; Bütt, H.; Vollmer, D. Surface Charge Printing for Programmed Droplet Transport. Nat. Mater. 2019, 18, 936–941. https://doi.org/10.1038/s41563-019-0440-2.
- Peng, W.; Lin, S.; Guan, D.; Chen, Y.; Wu, H.; Cao, L.; Huang, Y.; Li, F. Cactus-Inspired Photonic Crystal Chip for Attomolar Fluorescence Multi-analysis. Anal. Chem. 2023, 95, 2047–2053. https://doi.org/10.1021/acs.analchem.2c04729.
- Hwang, Y.H.; Um, T.; Hong, J.; Ahn, G.N.; Qiao, J.; Kang, I.; Qi, L.; Lee, H.; Kim, D.P. Robust Production of Well-Controlled Microdroplets in a 3D-Printed Chimney-Shaped Milli-Fluidic Device. Adv. Mater. Technol. 2019, 4, 1900457. https://doi.org/10.1002/admt.201900457.
- Plog, J.; Jiang, Y.; Pan, Y.; Yarin, A.L. Electrostatic Charging and Deflection of Droplets for Drop-on-Demand 3D Printing within Confinements. Addit. Manuf. 2020, 36, 101400. https://doi.org/10.1016/j.addma.2020.101400.
- Zhang, Y.; Dong, Z.; Li, C.; Du, H.; Fang, N.; Wu, L.; Song, Y. Continuous 3D Printing from One Single Droplet. Nat. Commun. 2020, 11, 4685. https://doi.org/10.1038/s41467-020-18518-1.
- Ma, S.; Liu, D.; Sheng, W.; Ma, Y.; Li, B.; Zhao, X.; Wang, X.; Zhou, F.; Liu, W. Bio-Inspired Wet/Lubricious/Adhesive Soft Matter and Performance Control in-between. Adv. Bionics 2024, 1, 29–56. https://doi.org/10.1016/j.abs.2024.09.002.
- Zhang, S.; Chi, M.; Liu, T.; Luo, B.; Cai, C.; Wang, J.; Liu, Y.; Gao, C.; Wang, S.; Nie, S. Spontaneous Charging-induced Droplets Directional Steering. Nano Energy 2024, 127, 109766. https://doi.org/10.1016/j.nanoen.2024.109766.
- Ferraro, D.; Serra, M.; Filippi, D.; Zago, L.; Guglielmin, E.; Pierno, M.; Descroix, S.; Viovy, J.-L.; Mistura, G. Controlling the Distance of Highly Confined Droplets in a Capillary by Interfacial Tension for Merging on-demand. Lab Chip 2019, 19, 136–146. https://doi.org/10.1039/c8lc01182f.
- Zhang, X.; Sun, L.; Wang, Y.; Bian, F.; Wang, Y.; Zhao, Y. Multibioinspired Slippery Surfaces with Wettable Bump Arrays for Droplets Pumping. Proc. Natl. Acad. Sci. USA 2019, 116, 20863–20868. https://doi.org/10.1073/pnas.1912467116.
- Li, G.; Zhang, Y.; Zhang, X.; Zhu, B.; Lei, Y.; Chen, D.; Shui, L.; Wu, G.; Xue, L. Filiform Papillae-Inspired Wearable Pressure Sensor with High Sensitivity and Wide Detection Range. Adv. Funct. Mater. 2024, 35, 2414465 https://doi.org/10.1002/adfm.202414465.
- Wang, L.; Zhang, C.; Wei, Z.; Xin, Z. Bioinspired Fluoride-Free Magnetic Microcilia Arrays for Anti-Icing and Multidimensional Droplet Manipulation. ACS Nano 2023, 18, 526–538. https://doi.org/10.1021/acsnano.3c08368.
- Gao, Z.; Lin, G.; Chen, Y.; Zheng, Y.; Sang, N.; Li, Y.; Chen, L.; Li, M. Moth-eye Manostructure PDMS Films for Reducing Reflection and Retaining Flexibility in Ultra-thin c-Si solar cells. Sol. Energy 2020, 205, 275–281. https://doi.org/10.1016/j.solener.2020.05.065.
- Zhang, B.; Liao, X.; Chen, Y.; Xiao, H.; Ni, Y.; Chen, X. Rapid Programmable Nanodroplet Motion on a Strain-Gradient Surface. Langmuir 2019, 35, 2865–2870. https://doi.org/10.1021/acs.langmuir.8b03774.
- Tian, L.; Dou, H.; Shao, Y.; Yi, Y.; Fu, X.; Zhao, J.; Fan, Y.; Ming, W.; Ren, L. Magnetically Controlled Super-wetting Surface Switching between Ultra-low and Ultra-high Droplet Adhesion. Chem. Eng. J. 2023, 456, 141093. https://doi.org/10.1016/j.cej.2022.141093.
- Shao, K.; Jiang, S.; Hu, Y.; Zhang, Y.; Li, C.; Zhang, Y.; Li, J.; Wu, D.; Chu, J. Bioinspired Lubricated Slippery Magnetic Responsive Microplate Array for High Performance Multi-Substance Transport. Adv. Funct. Mater. 2022, 32, 2205831. https://doi.org/10.1002/adfm.202205831.
- Ko, J.; Zhao, Z.; Hwang, S.H.; Kang, H.; Ahn, J.; Jeon, S.; Bok, M.; Jeong, Y.; Kang, K.; Cho, I.; et al. Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate. ACS Nano 2020, 14, 2191–2201. https://doi.org/ 10.1021/acsnano.9b09082.
- Song, Y.; Yang, J.; Zhang, X.; Zhang, Z.; Hu, X.; Cheng, G.; Liu, Y.; Lv, G.; Ding, J. Temperature-Responsive Peristome-Structured Smart Surface for the Unidirectional Controllable Motion of Large Droplets. Microsyst. Nanoeng. 2023, 9, 119. https://doi.org/10.1038/s41378-023-00573-5.
- Rao, Q.; Tong, Z.; Song, L.; Ali, A.; Hou, Y.; He, Q.; Lu, J.; Gao, X.; Zhan, X.; Zhang, Q. NIR-driven Fast Construction of Patterned-Wettability on Slippery Lubricant Infused Surface for Droplet Manipulation. Chem. Eng. J. 2022, 428, 131141. https://doi.org/10.1016/j.cej.2021.131141.
- Liang, X.; Karnaukh, K.; Zhao, L.; Seshadri, S.; DuBose, A.; Bailey, S.; Cao, Q.; Cooper, M.; Xu, H.; Haggmark, M.; et al. Dynamic Manipulation of Droplets on Liquid-Infused Surfaces Using Photoresponsive Surfactant. Acs Cent. Sci. 2024, 10, 684–694. https://doi.org/10.1021/acscentsci.3c00982.
- Zhang, Q.; Bai, X.; Li, Y.; Zhang, X.; Tian, D.; Jiang, L. Ultrastable Super-Hydrophobic Surface with an Ordered Scaly Structure for Decompression and Guiding Liquid Manipulation. ACS Nano 2022, 16, 16843–16852. https://doi.org/10.1021/acsnano.2c06749.
- Huo, X.; Li, L.; Yang, Y.; Liu, X.; Yu, Q.; Wang, Q. The Dynamics of Directional Transport of a Droplet in Programmable Electrowetting Channel. Phys. Fluids 2023, 35, 032105. https://doi.org/10.1063/5.0139965.
- Li, N.; Yang, P.; Bai, Z.; Shen, T.; Liu, Z.; Qin, S.; Hu, J.; Yu, C.; Dong, Z.; Chen, X. Bioinspired Electrostatic Capture-and-Release System for Precise Microdroplet Manipulation. Adv. Mater. 2025, 37, 2418711. https://doi.org/10.1002/adma.202418711.
- Kravanja, G.; Kriegl, R.; Hribar, L.; Glavan, G.; Drevensek-Olenik, I.; Shamonin, M.; Jezersek, M. Magnetically Actuated Surface Microstructures for Efficient Transport and Tunable Separation of Droplets and Solids. Adv. Eng. Mater. 2023, 25, 2301000. https://doi.org/ 10.1002/adem.202301000.
- Chi, Y.; Evans, E.; Clary, M.R.; Qi, F.; Sun, H.; Cantu, S.N.; Capodanno, C.M.; Tracy, J.; Yin, J. Magnetic Kirigami Dome Metasheet with High Deformability and Stiffness for Adaptive Dynamic Shape-Shifting and Multimodal Manipulation. Sci. Adv. 2024 10, eadr8421. https://doi.org/10.1126/sciadv.adr8421.
- Wang, W.; Timonen, J.; Carlson, A.; Drotlef, D.; Zhang, C.; Kolle, S.; Grinthal, A.; Wong, T.S.; Hatton, B.; Kang, S.H.; et al. Multifunctional Ferrofluid-Infused Surfaces with Reconfigurable Multiscale Topography. Nature 2018, 559, 77–82. https://doi.org/10.1038/s41586-018-0250-8.
- Han, K.; Snezhko, A. Programmable Chiral States in Flocks of Active Magnetic Rollers. Lab Chip 2021, 21, 215–222. https://doi.org/10.1039/d0lc00892c.
- Park, S.; Choi, G.; Kang, M.; Kim, W.; Kim, J.; Jeong, H.E. Bioinspired Magnetic Cilia: From Materials to Applications. Microsyst. Nanoeng. 2023, 9, 153. https://doi.org/10.1038/s41378-023-00611-2.
- Yang, C.; Wu, L.; Li, G. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. ACS Appl. Mater. Interfaces 2018, 10, 20150–20158. https://doi.org/10.1021/acsami.8b04190.
- Kim, J.; Kang, S.; Lee, B.; Ko, H.; Bae, W.; Suh, K.; Kwak, M.; Jeong, H. Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film. Sci. Rep. 2015, 5, 17843. https://doi.org/10.1038/srep17843.
- Chen, Y.; Quan, Z.; Xie, H.; Li, B.; Zhao, J.; Niu, S.; Han, Z.; Ren, L. Bioinspired Active Dynamic Dust Remover for Multiscale Stardust Repelling of Unmanned Probe Surface. Nano Lett. 2024, 25, 553–561. https://doi.org/10.1021/acs.nanolett.4c05480.
- Lu, G.; Cui, H.; Zhao, T.; Yang, W.; Wang, M.; Liu, Z.; Niu, S.; Ren, L. Cilia-Inspired Functional Channels for High-Speed and Directional PEMFC Drainage. Adv. Funct. Mater. 2024, 35, 2416005. https://doi.org/10.1002/adfm.202416005.
- Zhang, X.; Ben, S.; Zhao, Z.; Ning, Y.; Li, Q.; Long, Z.; Yu, C.; Liu, K.; Jiang, L. Lossless and Directional Transport of Droplets on Multi-bioinspired Superwetting V-shape Rails. Adv. Funct. Mater. 2023, 33, 2212217. https://doi.org/10.1002/adfm.202212217.
- Feng, S.; Zhu, P.; Zheng, H.; Zhan, H.; Chen, C.; Li, J.; Wang, L.; Yao, X.; Liu, Y.; Wang, Z. Three-Dimensional Capillary Ratchet-Induced Liquid Directional Steering. Science 2021, 373, 1344–1348. https://doi.org/10.1126/science.abg7552.
- Li, Y.; Liu, X.; Wang, R.; Jiao, S.; Liu, Y.; Lai, H.; Cheng, Z. Triple-Bioinspired Shape Memory Microcavities with Strong and Switchable Adhesion. ACS Nano 2023, 17, 23595–23607. https://doi.org/10.1021/acsnano.3c06651.
- Li, Y.; Wang, R.; Jiao, S.; Lai, H.; Liu, Y.; Cheng, Z. Beetle-Inspired Oil-Loaded Shape Memory Micro-Arrays with Switchable Adhesion to Both Solid and Liquid. Chem. Eng. J. 2023, 461, 141927. https://doi.org/10.1016/j.cej.2023.141927.
- Hev, Z.; Mu, L.; Wang, N.; Su, J.; Wang, Z.; Luo, M.; Zhang, C.; Li, G.; Lan, X. Design, Fabrication, and Applications of Bioinspired Slippery Surfaces. Adv. Colloid Interface 2023, 318, 102948. https://doi.org/10.1016/j.cis.2023.102948.
- Yue, T.; Bloomfield-Gadêlha, H.; Rossiter, J. Snail-Inspired Water-Enhanced Soft Sliding Suction for Climbing Robots. Nat. Commun. 2024, 15, 4038. https://doi.org/10.1038/s41467-024-48293-2.
- Smith, J.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen, R.; McKinley, G.; Varanasi, K. Droplet Mobility on Lubricant-Impregnated Surfaces. Soft Matter 2013, 9, 1772–1780. https://doi.org/10.1039/c2sm27032c.
- Manabe, K.; Saito, K.; Nakano, M.; Ohzono, T.; Norikane, Y. Light-Driven Liquid Conveyors: Manipulating Liquid Mobility and Transporting Solids on Demand. ACS Nano 2022, 16, 16353–16362. https://doi.org/10.1021/acsnano.2c05524.
- Wang, Z.; Xu, Q.; Wang, L.; Heng, L.; Jiang, L. Temperature-induced switchable interfacial interactions on slippery surfaces for controllable liquid manipulation. J. Mater. Chem. A 2019, 7, 18510–18518. https://doi.org/10.1039/c9ta05164c.
- Ichimura, K.; Oh, S.; Nakagawa, M. Light-Driven Motion of Liquids on a Photoresponsive Surface. Science 2000, 288, 1624–1626. https://doi.org/10.1126/science.288.5471.1624.
- Hwang, H.; Papadopoulos, P.; Fujii, S.; Wooh, S. Driving Droplets on Liquid Repellent Surfaces via Light-Driven Marangoni Propulsion. Adv. Funct. Mater. 2022, 32, 2111311. https://doi.org/10.1002/adfm.202111311.
- Tang, B.; Meng, C.; Zhuang, L.; Groenewold, J.; Qian, Y.; Sun, Z.; Liu, X.; Gao, J.; Zhou, G. Field-Induced Wettability Gradients for No-Loss Transport of Oil Droplets on Slippery Surfaces. ACS Appl. Mater. Interfaces 2020, 12, 38723–38729. https://doi.org/10.1021/acsami.0c06389.
- Chen, C.; Huan, Z.; Jiao, Y.; Shi, L.; Zhang, Y.; Li, J.; Li, C.; Lv, X.; Wu, S.; Hu, Y. In Situ Reversible Control between Sliding and Pinning for Diverse Liquids under Ultra-Low Voltage. ACS Nano 2019, 13, 5742–5752. https://doi.org/10.1021/acsnano.9b01180.
- Feng, S.; Hou, Y.; Zheng, Y. Programmable Curvilinear Self-Propelling of Droplets without Preset Channels. Droplet 2025, 3, e138. https://doi.org/10.1002/dro2.138.