Downloads
Download




This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Chameleon-Inspired Color-Changeable Colloidal Photonic Crystal Films Sensitive to Human Body Temperature
Toshimitsu Kanai *, Mari Sato, and Yuna Hirano
Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
* Correspondence: tkanai@ynu.ac.jp
Received: 6 February 2025; Revised: 21 March 2025; Accepted: 24 March 2025; Published: 24 March 2025
Abstract: Artificial chameleon skins have been developed using advanced materials, such as photonic crystals, for camouflage and thermoregulation. However, to respond to subtle changes in human body temperature, the thermosensitivity, quality, and color response of these biomimetic films need to be improved. We report the development of chameleon-inspired color-changeable films with enhanced sensitivity to changes in the human body temperature. Non-close-packed colloidal photonic crystals were immobilized in a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) hydrogel film and simultaneously attached to a flexible polyethylene terephthalate (PET) sheet by photopolymerization. The attachment to the PET sheet ensured high thermosensitivity and film quality besides ease of use. The film displayed full color spectrum from red to violet within a small range (~3 °C) of human body temperature without any change in the film area and film distortion. The temperature range of the full color spectrum was easily tuned by adding a poor solvent, ethylene glycol, to PNIPAM. The film attached to a human arm exhibited color changes from red to yellow, light green, and blue in response to changes in the body temperature without external heat. This study could contribute to the basic research and practical applications of artificial chameleon skins.
Keywords:
structural color colloidal photonic crystal tunable color chameleon thermosensitive hydrogel
References
- Ligon, R.A.; McGraw, K.J. Chameleons communicate with complex colour changes during contests: Different body regions convey different information. Biol. Lett. 2013, 9, 20130892. doi: 10.1098/rsbl.2013.0892
- Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 7368. doi: 10.1038/ncomms7368
- Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. Mechanical chameleon through dynamic real time-plasmonic tuning. ACS Nano 2016, 10, 1788–1794. doi: 10.1021/acsnano.5b07472
- Kim, H.; Choi, J.; Kim, K.K.; Won, P.; Hong, S.; Ko, S.H. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 2021, 12, 4658. doi: 10.1038/s41467-021-24916-w
- Liu, J.; Zhou, J.; Meng, Y.; Zhu, L.; Xu, J.; Huang, Z.; Wang, S.; Xia, Y. Artificial skin with patterned stripes for color camouflage and thermoregulation. ACS Appl. Mater. Interfaces 2023, 15, 48601−48612. doi: 10.1021/acsami.3c08872
- Rezaei, S.D.; Dong, Z.; Chan, J.Y.E.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.-W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic structural colors. ACS Photonics 2021, 8, 18–33. doi: 10.1021/acsphotonics.0c00947
- Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081. doi: 10.1016/j.xinn.2021.100081
- Feng, L.; Wang, F.; Luo, H.; Qiu, B. Review of recent advancements in the biomimicry of structural colors. Dyes Pigment. 2023, 210, 111019. doi: 10.1016/j.dyepig.2022.111019
- Wang, H.; Zhang, H.; Chen, Z.; Zhao, Y.; Gu, Z.; Shang, L. Polymer-based responsive structural color materials. Prog. Mater. Sci. 2023, 135, 101091. doi: 10.1016/j.pmatsci.2023.101091
- Liu, Y.; Luo, W.; Fan, Q.; Ma, H.; Yin, Y.; Long, Y.; Guan, J. Polyphenol-mediated synthesis of superparamagnetic magnetite nanoclusters for highly stable magnetically responsive photonic crystals. Adv. Funct. Mater. 2023, 33, 2303470. doi: 10.1002/adfm.202303470
- Du, X.; Cui, H.; Xu, T.; Huang, C.; Wang, Y.; Zhao, Q.; Xu, Y.; Wu, X. Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv. Funct. Mater. 2020, 30, 1909202. doi: 10.1002/adfm.201909202
- Huang, C.; Shang, Y.; Hua, J.; Yin, Y.; Du, X. Self-destructive structural color liquids for time–temperature indicating. ACS Nano 2023, 17, 10269–10279. doi: 10.1021/acsnano.3c00467
- Lee, G.H.; Choi, T.M.; Kim, B.; Han, S.H.; Lee, J.M.; Kim, S.-H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357. doi: 10.1021/acsnano.7b05885
- Wang, Y.; Yu, Y.; Guo, J.; Zhang, Z.; Zhang, X.; Zhao, Y. Bio-Inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Adv. Funct. Mater. 2020, 30, 2000151. doi: 10.1002/adfm.202000151
- Tajima, H.; Amano, A.; Kanai, T. Elastomer-immobilized tunable colloidal photonic crystal films with high optical qualities and high maximum strain. Mater. Adv. 2021, 2, 3294–3299. doi: 10.1039/D1MA00133G
- Fudouzi, H.; Sawada, T. Photonic rubber sheets with tunable color by elastic deformation. Langmuir 2006, 22, 1365–1368. doi: 10.1021/la0521037
- Hu, Y.; Wei, B.; Yang, D.; Ma, D.; Huang, S. Chameleon-inspired brilliant and sensitive mechano-chromic photonic skins for self-reporting the strains of earthworms. ACS Appl. Mater. Interfaces 2022, 14, 11672–11680. doi: 10.1021/acsami.2c00561
- Takeoka, Y.; Watanabe, M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 2003, 19, 9104–9106. doi: 10.1021/la035142w
- Sugiyama, H.; Sawada, T.; Yano, H.; Kanai, T. Linear thermosensitivity of gel-immobilized tunable colloidal photonic crystals. J. Mater. Chem. C 2013, 1, 6103–6106. doi: 10.1039/c3tc30736k
- Li, X.; Li, X.; Shi, X.; Peng, M.; Lu, X. PNIPAM-based colloidal photonic crystals above phase transition temperature and its application in naked-eye glucose-detection. Eur. Polym. J. 2019, 120, 109230. doi: 10.1016/j.eurpolymj.2019.109230
- Saunders, B.R.; Vincent, B. Microgel particles as model colloids: Theory, properties and applications. Adv. Colloid Interface Sci. 1999, 80, 1–25. doi: 10.1016/S0001-8686(98)00071-2
- Neves, E.B.; Salamunes, A.C.C.; de Oliveira, R.M.; Stadnik, A.M.W. Effect of body fat and gender on body temperature distribution. J. Therm. Biol. 2017, 70, 1–8. doi: 10.1016/j.jtherbio.2017.10.017
- Kanai, T.; Kobayashi, N.; Tajima, H. Enhanced linear thermosensitivity of gel-immobilized colloidal photonic crystal film bound on glass substrate. Mater. Adv. 2021, 2, 2600–2603. doi: 10.1039/D1MA00041A
- Sugiyama, K.; Kato, K.; Kido, M.; Shiraishi, K.; Ohga, K.; Okada, K.; Matsuo, O. Grafting of vinyl monomers on the surface of a poly(ethylene terephthalate) film using Ar plasma post polymerization technique to increase biocompatibility. Macromol. Chem. Phys. 1998, 199, 1201–1208. doi: 10.1002/macp.1998.021990636
- Sawada, T.; Suzuki, Y.; Toyotama, A.; Iyi, N. Quick fabrication of gigantic single-crystalline colloidal crystals for photonic crystal applications. Jpn. J. Appl. Phys. 2001, 40, L1226–L1228. doi: 10.1143/JJAP.40.L1226
- Kanai, T.; Sawada, T.; Toyotama, A.; Kitamura, K. Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality. Adv. Funct. Mater. 2005, 15, 25–29. doi: 10.1002/adfm.200305160
- Kanai, T.; Sawada, T.; Kitamura, K. Optical determination of the lattice constants of colloidal crystals without use of the refractive index. Langmuir 2003, 19, 1984–1986. doi: 10.1021/la0268855
- Hiltner, P.A.; Krieger, I.M. Diffraction of light by ordered suspensions. J. Phys. Chem. 1969, 73, 2386–2389. doi: 10.1021/j100727a049
- Kanai, T.; Yano, H.; Kobayashi, N.; Sawada, T. Enhancement of thermosensitivity of gel-immobilized tunable colloidal photonic crystals with anisotropic contraction. ACS Macro Lett. 2017, 6, 1196–1200. doi: 10.1021/acsmacrolett.7b00780