Downloads
Download




This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Quantification of Nanomaterial Surfaces
Harshit Kumar and Mingdi Yan *
Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
* Correspondence: Mingdi_Yan@uml.edu
Received: 24 February 2025; Revised: 3 March 2025; Accepted: 5 March 2025; Published: 10 March 2025
Abstract: Quantification of nanomaterial surfaces is critical in the design of nanomaterials with predictable and tailored functions. Nanomaterials exhibit unique surface properties, such as high surface-to-volume ratios and tunable chemistry, which govern their stability, reactivity, and functions in a wide range of applications including catalysis, drug delivery, bioimaging, and environmental remediation. However, quantitative analysis of the nanomaterial surface is challenging due to the inherent heterogeneity, which affects the surface structure, ligand density and presentation. This mini review discusses several important aspects of surface quantification, including ligand structure, ligand density, functional groups, and surface reactions. Traditional analytical methods, such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and UV-vis spectroscopy, as well as emerging techniques that offer higher spatial resolution and sensitivity are discussed, and examples are given.
Keywords:
nanomaterial surface quantification ligand structure surface reactions
References
- Pozzi, M.; Jonak Dutta, S.; Kuntze, M.; Bading, J.; Rüßbült, J.S.; Fabig, C.; Langfeldt, M.; Schulz, F.; Horcajada, P.; Parak, W.J. Visualization of the High Surface-to-Volume Ratio of Nanomaterials and Its Consequences. J. Chem. Educ. 2024, 101, 3146–3155. doi: 10.1021/acs.jchemed.4c00089
- Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface Coordination Chemistry of Metal Nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131. doi: 10.1021/jacs.6b10978
- Singh, R.; Srinivas, S.P.; Kumawat, M.; Daima, H.K. Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives. OpenNano 2024, 15, 100194. doi: 10.1016/j.onano.2023.100194
- Nam, J.-M.; Owen, J.S.; Talapin, D.V. The Ligand–Surface Interface and Its Influence on Nanoparticle Properties. Acc. Chem. Res. 2023, 56, 2265–2266. doi: 10.1021/acs.accounts.3c00416
- Cetin, A.; Ilk Capar, M. Functional-Group Effect of Ligand Molecules on the Aggregation of Gold Nanoparticles: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2022, 126, 5534–5543. doi: 10.1021/acs.jpcb.2c01132
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. doi: 10.1016/j.cis.2020.102162
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. doi: 10.1021/cr400544s
- An, K.; Somorjai, G.A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 2012, 4, 1512–1524. doi: 10.1002/cctc.201200229
- Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121, 649–735. doi: 10.1021/acs.chemrev.0c00454
- Kumar, S.; Saha, D.; Kohlbrecher, J.; Aswal, V.K. Interplay of interactions for different pathways of the fractal aggregation of nanoparticles. Chem. Phys. Lett. 2022, 803, 139808. doi: 10.1016/j.cplett.2022.139808
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880. doi: 10.1021/acs.chemrev.8b00733
- Bhattacharjee, K.; Prasad, B.L.V. Surface functionalization of inorganic nanoparticles with ligands: A necessary step for their utility. Chem. Soc. Rev. 2023, 52, 2573–2595. doi: 10.1039/D1CS00876E
- Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383. doi: 10.1098/rsta.2009.0273
- Mishra, R.K.; Verma, K.; Singh, D.S. Defect engineering in nanomaterials: Impact, challenges, and applications. Smart Mater. Manuf. 2024, 2, 100052. doi: 10.1016/j.smmf.2024.100052
- Baumler, K.J.; Schaak, R.E. Tutorial on Describing, Classifying, and Visualizing Common Crystal Structures in Nanoscale Materials Systems. ACS Nanosci. Au 2024, 4, 290–316. doi: 10.1021/acsnanoscienceau.4c00010
- Xi, Z.; Zhang, R.; Kiessling, F.; Lammers, T.; Pallares, R.M. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater. Sci. Eng. 2024, 10, 38–50. doi: 10.1021/acsbiomaterials.3c00249
- Walker, D.A.; Leitsch, E.K.; Nap, R.J.; Szleifer, I.; Grzybowski, B.A. Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nat. Nanotechnol. 2013, 8, 676–681. doi: 10.1038/nnano.2013.158
- Pedrazo-Tardajos, A.; Claes, N.; Wang, D.; Sánchez-Iglesias, A.; Nandi, P.; Jenkinson, K.; De Meyer, R.; Liz-Marzán, L.M.; Bals, S. Direct visualization of ligands on gold nanoparticles in a liquid environment. Nat. Chem. 2024, 16, 1278–1285. doi: 10.1038/s41557-024-01574-1
- Sen, S.; Thaker, A.; Sirajudeen, L.; Williams, D.; Nannenga, B.L. Protein–Nanoparticle Complex Structure Determination by Cryo-Electron Microscopy. ACS Appl. Bio Mater. 2022, 5, 4696–4700. doi: 10.1021/acsabm.2c00130
- Shevchenko, E.V.; Talapin, D.V.; Kotov, N.A.; O'Brien, S.; Murray, C.B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59. doi: 10.1038/nature04414
- Zhou, W.; Li, Y.; Partridge, B.E.; Mirkin, C.A. Engineering Anisotropy into Organized Nanoscale Matter. Chem. Rev. 2024, 124, 11063–11107. doi: 10.1021/acs.chemrev.4c00299
- Jadzinsky, P.D.; Calero, G.; Ackerson, C.J.; Bushnell, D.A.; Kornberg, R.D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. Science 2007, 318, 430–433. doi: 10.1126/science.1148624
- Li, Y.; Jin, R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644. doi: 10.1021/jacs.0c05866
- Marbella, L.E.; Millstone, J.E. NMR Techniques for Noble Metal Nanoparticles. Chem. Mater. 2015, 27, 2721–2739. doi: 10.1021/cm504809c
- Jayawardena, H.S.N.; Liyanage, S.H.; Rathnayake, K.; Patel, U.; Yan, M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal. Chem. 2021, 93, 1889–1911. doi: 10.1021/acs.analchem.0c05208
- Wu, M.; Vartanian, A.M.; Chong, G.; Pandiakumar, A.K.; Hamers, R.J.; Hernandez, R.; Murphy, C.J. Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure. J. Am. Chem. Soc. 2019, 141, 4316–4327. doi: 10.1021/jacs.8b11445
- Novotný, J.; Vícha, J.; Bora, P.L.; Repisky, M.; Straka, M.; Komorovsky, S.; Marek, R. Linking the Character of the Metal–Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin–Orbit Coupling. J. Chem. Theory Comput. 2017, 13, 3586–3601. doi: 10.1021/acs.jctc.7b00444
- Vı́cha, J.; Novotný, J.; Komorovsky, S.; Straka, M.; Kaupp, M.; Marek, R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends Across the Periodic Table. Chem. Rev. 2020, 120, 7065–7103. doi: 10.1021/acs.chemrev.9b00785
- Ndugire, W.; Liyanage, S.H.; Yan, M. Carbohydrate-Presenting Metal Nanoparticles: Synthesis, Characterization and Applications. In Comprehensive Glycoscience, 2nd ed.; Barchi, J.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 380–405. doi: 10.1016/B978-0-12-819475-1.00040-7
- Wu, Z.; Jin, R. Stability of the Two Au−S Binding Modes in Au25(SG)18 Nanoclusters Probed by NMR and Optical Spectroscopy. ACS Nano 2009, 3, 2036–2042. doi: 10.1021/nn9004999
- Ghosh, J.; Cooks, R.G. Mass spectrometry in materials synthesis. Trends Anal. Chem. 2023, 161, 117010. doi: 10.1016/j.trac.2023.117010
- Comby-Zerbino, C.; Dagany, X.; Chirot, F.; Dugourd, P.; Antoine, R. The emergence of mass spectrometry for characterizing nanomaterials. Atomically precise nanoclusters and beyond. Mater. Adv. 2021, 2, 4896–4913. doi: 10.1039/D1MA00261A
- Nicolardi, S.; van der Burgt, Y.E.M.; Codée, J.D.C.; Wuhrer, M.; Hokke, C.H.; Chiodo, F. Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry. ACS Nano 2017, 11, 8257–8264. doi: 10.1021/acsnano.7b03402
- Smith, A.M.; Johnston, K.A.; Crawford, S.E.; Marbella, L.E.; Millstone, J.E. Ligand density quantification on colloidal inorganic nanoparticles. Analyst 2017, 142, 11–29. doi: 10.1039/C6AN02206E
- Mansfield, E.; Tyner, K.M.; Poling, C.M.; Blacklock, J.L. Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis. Anal. Chem. 2014, 86, 1478–1484. doi: 10.1021/ac402888v
- Choi, K.; Myoung, S.; Seo, Y.; Ahn, S. Quantitative NMR as a Versatile Tool for the Reference Material Preparation. Magnetochemistry 2021, 7, 15. doi: 10.3390/magnetochemistry7010015
- Kong, N.; Zhou, J.; Park, J.; Xie, S.; Ramström, O.; Yan, M. Quantitative Fluorine NMR To Determine Carbohydrate Density on Glyconanomaterials Synthesized from Perfluorophenyl Azide-Functionalized Silica Nanoparticles by Click Reaction. Anal. Chem. 2015, 87, 9451–9458. doi: 10.1021/acs.analchem.5b02507
- Potts, J.C.; Jain, A.; Amabilino, D.B.; Rawson, F.J.; Pérez-García, L. Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV–Visible Absorption Spectroscopy Deconvolution. Anal. Chem. 2023, 95, 12998–13002. doi: 10.1021/acs.analchem.3c01649
- Senoner, M.; Unger, W.E.S. SIMS imaging of the nanoworld: Applications in science and technology. J. Anal. At. Spectrom. 2012, 27, 1050–1068. doi: 10.1039/c2ja30015j
- Eller, M.J.; Chandra, K.; Coughlin, E.E.; Odom, T.W.; Schweikert, E.A. Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars. Anal. Chem. 2019, 91, 5566–5572. doi: 10.1021/acs.analchem.8b03715
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. doi: 10.1016/j.ab.2004.12.001
- Wang, X.; Ramström, O.; Yan, M. A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J. Mater. Chem. 2009, 19, 8944–8949. doi: 10.1039/b917900c
- Janicek, B.E.; Hinman, J.G.; Hinman, J.J.; Bae, S.H.; Wu, M.; Turner, J.; Chang, H.-H.; Park, E.; Lawless, R.; Suslick, K.S.; et al. Quantitative Imaging of Organic Ligand Density on Anisotropic Inorganic Nanocrystals. Nano Lett. 2019, 19, 6308–6314. doi: 10.1021/acs.nanolett.9b02434
- Chen, C.; Zhou, Y.; Chen, C.; Zhu, S.; Yan, X. Quantification of Available Ligand Density on the Surface of Targeted Liposomal Nanomedicines at the Single-Particle Level. ACS Nano 2022, 16, 6886–6897. doi: 10.1021/acsnano.2c02084
- Geißler, D.; Nirmalananthan-Budau, N.; Scholtz, L.; Tavernaro, I.; Resch-Genger, U. Analyzing the surface of functional nanomaterials—How to quantify the total and derivatizable number of functional groups and ligands. Microchim. Acta 2021, 188, 321. doi: 10.1007/s00604-021-04960-5
- Kunc, F.; Balhara, V.; Brinkmann, A.; Sun, Y.; Leek, D.M.; Johnston, L.J. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 2018, 90, 13322–13330. doi: 10.1021/acs.analchem.8b02803
- Kunc, F.; Balhara, V.; Sun, Y.; Daroszewska, M.; Jakubek, Z.J.; Hill, M.; Brinkmann, A.; Johnston, L.J. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 2019, 144, 5589–5599. doi: 10.1039/C9AN01080G
- Moser, M.; Nirmalananthan, N.; Behnke, T.; Geißler, D.; Resch-Genger, U. Multimodal Cleavable Reporters versus Conventional Labels for Optical Quantification of Accessible Amino and Carboxy Groups on Nano- and Microparticles. Anal. Chem. 2018, 90, 5887–5895. doi: 10.1021/acs.analchem.8b00666
- Roloff, A.; Nirmalananthan-Budau, N.; Rühle, B.; Borcherding, H.; Thiele, T.; Schedler, U.; Resch-Genger, U. Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores. Anal. Chem. 2019, 91, 8827–8834. doi: 10.1021/acs.analchem.8b05515
- Sun, Y.; Kunc, F.; Balhara, V.; Coleman, B.; Kodra, O.; Raza, M.; Chen, M.; Brinkmann, A.; Lopinski, G.P.; Johnston, L.J. Quantification of amine functional groups on silica nanoparticles: A multi-method approach. Nanoscale Adv. 2019, 1, 1598–1607. doi: 10.1039/C9NA00016J
- Konsolakis, M. Surface Chemistry and Catalysis. Catalysts 2016, 6, 102. doi: 10.3390/catal6070102
- Somorjai, G.A.; Li, Y. Introduction to Surface Chemistry and Catalysis; 2nd Ed., 2010, Wiley: NewYork, NY, USA.
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020, 7, 587012. doi: 10.3389/fmolb.2020.587012
- Ndugire, W.; Yan, M. Synthesis and solution isomerization of water-soluble Au9 nanoclusters prepared by nuclearity conversion of [Au11(PPh3)8Cl2]Cl. Nanoscale 2021, 13, 16809–16817. doi: 10.1039/D1NR04401J
- Klein, K.; Loza, K.; Heggen, M.; Epple, M. An efficient method for covalent surface functionalization of ultrasmall metallic nanoparticles by surface azidation followed by copper‐catalyzed azide‐alkyne cycloaddition (click chemistry). ChemNanoMat 2021, 7, 1330–1339. doi: 10.1002/cnma.202100359
- Yang, X.; Chen, F.; Kim, M.A.; Liu, H.; Wolf, L.M.; Yan, M. Using metal substrates to enhance the reactivity of graphene towards Diels–Alder reactions. Phys. Chem. Chem. Phys. 2022, 24, 20082–20093. doi: 10.1039/D2CP01842J
- Tu, J.; Yan, M. Enhancing the chemical reactivity of graphene through substrate engineering. Small 2024, e2408116. doi: 10.1002/smll.202408116
- Calvin, J.J.; Sedlak, A.B.; Brewer, A.S.; Kaufman, T.M.; Alivisatos, A.P. Evidence and Structural Insights into a Ligand-Mediated Phase Transition in the Solvated Ligand Shell of Quantum Dots. ACS Nano 2024, 18, 25257–25270. doi: 10.1021/acsnano.4c08439
- Lee, S.-J.; Jang, J.D.; Choi, S.-M. Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS. Nano Lett. 2025, 25, 981–986. doi: 10.1021/acs.nanolett.4c04163
- Wang, X.; Ramström, O.; Yan, M. Quantitative Analysis of Multivalent Ligand Presentation on Gold Glyconanoparticles and the Impact on Lectin Binding. Anal. Chem. 2010, 82, 9082–9089. doi: 10.1021/ac102114z
- Wang, X.; Ramström, O.; Yan, M. Glyconanomaterials: Synthesis, Characterization, and Ligand Presentation. Adv. Mater. 2010, 22, 1946–1953. doi: 10.1002/adma.200903908
- Rashid, U.; Bro-Jørgensen, W.; Harilal, K.B.; Sreelakshmi, P.A.; Mondal, R.R.; Chittari Pisharam, V.; Parida, K.N.; Geetharani, K.; Hamill, J.M.; Kaliginedi, V. Chemistry of the Au–Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. J. Am. Chem. Soc. 2024, 146, 9063–9073. doi: 10.1021/jacs.3c14079
- Inkpen, M.S.; Liu, Z.F.; Li, H.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358. doi: 10.1038/s41557-019-0216-y