Downloads
Download
Additional Files
Download
- Supplementary Materials




This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Efficient Synthesis of Liquid Photonic Crystal by Electrically-Driven Colloid Concentration
Xiaodong Lu 1,†, Huimin Zhu 1,†, Sheng Chen 1, Ximeng Lv 1, and Jianping Ge 1,2,*
1 State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
2 Institute of Eco-Chongming, Shanghai 202162, China
* Correspondence: jpge@chem.ecnu.edu.cn
† These authors contributed equally to this work.
Received: 9 January 2025; Revised: 19 February 2025; Accepted: 21 February 2025; Published: 28 February 2025
Abstract: Liquid photonic crystal (LPC) is a promising new material in the field of sensing, display, printing, and coating due to its unique fluidity, metastability, and reversibility in colloidal assembly. However, it is a big challenge to prepare LPC materials in an efficient, controllable, and eco-friendly way. In this work, an electrically-driven colloid concentration process was developed for the efficient synthesis of LPC. The key for the synthesis was that the electrophoretic process produced a locally concentrated but “agglomeration-free” colloidal solution, which spontaneously turned to LPC after being kept standing for a few minutes. The synthesis possessed good universality and reproducibility for LPCs composed of different particles and solvents. Its efficiency could be improved by tuning the particles’ surface charge, the dielectric constant and viscosity of the solvent, as well as the external field conditions. More importantly, it could be developed into a large-scale and green process without chemical wastes compared to the previous synthetic methods.
Keywords:
liquid photonic crystal electrically-driven concentration agglomeration-free colloidal assembly green synthesis
References
- Chen, Y.; Zhang, C.B.; Zheng, Q.F.; Chen, Y. Separation-Cooperated Assembly of Liquid Photonic Crystals from Polydisperse Particles. Chem. Commun. 2018, 54, 13937–13940. doi: 10.1039/C8CC06499G
- Guo, J.J.; Zhang, Y.L.; Li, X.Y.; Zhang, X.; Huang, Y.; Yu, M.L.; Shao, J.Z. Electrostatic Fence Induced Assembly of Low-Concentration Colloidal Nanospheres to Form Liquid Photonic Crystals. J. Colloid Interface Sci. 2025, 679, 1084–1094. doi: 10.1016/j.jcis.2024.10.034
- Kim, S.H.; Park, J.G.; Choi, T.M.; Manoharan, V.N.; Weitz, D.A. Osmotic-Pressure-Controlled Concentration of Colloidal Particles in Thin-Shelled Capsules. Nat. Commun. 2014, 5, 3068. doi: 10.1038/ncomms4068
- Yang, D.P.; Ye, S.Y.; Ge, J.P. Solvent Wrapped Metastable Colloidal Crystals: Highly Mutable Colloidal Assemblies Sensitive to Weak External Disturbance. J. Am. Chem. Soc. 2013, 135, 18370–18376. doi: 10.1021/ja405670r
- Cai, J.Y.; Luo, W.; Pan, J.J.; Li, G.; Pu, Y.Y.; Si, L.Y.; Shi, G.P.; Shao, Y.X.; Ma, H.R.; Guan, J.G. Glucose-Sensing Photonic Nanochain Probes with Color Change in Seconds. Adv. Sci. 2022, 9, 2105239. doi: 10.1002/advs.202105239
- Hu, Y.; Tian, Z.Q.; Ma, D.K.; Qi, C.Z.; Yang, D.P.; Huang, S.M. Smart Colloidal Photonic Crystal Sensors. Adv. Colloid Interface Sci. 2024, 324, 103089. doi: 10.1016/j.cis.2024.103089
- Zhang, Y.X.; Ge, J.P. Liquid Photonic Crystal Detection Reagent for Reliable Sensing of Cu2+ in Water. RSC Adv. 2020, 10, 10972–10979. doi: 10.1039/D0RA01014F
- Zhu, B.T.; Fu, Q.Q.; Chen, K.; Ge, J.P. Liquid Photonic Crystals for Mesopore Detection. Angew. Chem. Int. Ed. 2018, 57, 252–256. doi: 10.1002/anie.201710456
- Liu, Y.F.; Hou, X.Y.; Song, Y.L.; Li, M.Z. Bioinspired Reflective Display Based on Photonic Crystals. Interdiscip. Mater. 2024, 3, 54–73. doi: 10.1002/idm2.12138
- Liu, T.; Lin, H.Y.; Hou, D.X.; Wang, J.X.; Zeng, S.S.; Che, C.C.; Wu, X.J.; Guo, J.B. Electrically-Triggered Oblique Helicoidal Cholesterics with a Single-Layer Architecture for Next-Generation Full-Color Reflective Displays. Adv. Funct. Mater. 2024, 34, 2408855. doi: 10.1002/adfm.202408855
- Shen, T.Z.; Perera, K.N.A.; Masud, A.R.; Priyadharshana, P.; Park, J.Y.; Wang, Q.H.; Hong, S.H.; Song, J.K. A Dual-Frequency Photonic Crystal Nanocolloid with Hue- and Brightness-Tunable Structural Colors. Cell Rep. Phys. Sci. 2023, 4, 101343. doi: 10.1016/j.xcrp.2023.101343
- Ran, X.X.; Ren, J.; Zhang, S.F.; Wu, Y.; Wu, S.L. Multicolor Electrochromic Display and Patterned Device Based on Hollow-SiO2-Supported WO3 Photonic Crystals. ACS Appl. Mater. Interfaces 2023, 15, 41763–41771. doi: 10.1021/acsami.3c09956
- Li, S.; Xiao, Y.S.; Shan, G.H.; Li, P.C.; Jia, L.X. Efficient Preparation of Single-Sided Structural Color Fabrics with Asymmetric Wettability, Angle-Dependence and Patternability Based on Liquid Photonic Crystals. Dye. Pigment. 2023, 215, 111302. doi: 10.1016/j.dyepig.2023.111302
- Li, Y.C.; Fan, Q.S.; Wang, X.H.; Liu, G.J.; Chai, L.Q.; Zhou, L.; Shao, J.Z.; Yin, Y.D. Shear-Induced Assembly of Liquid Colloidal Crystals for Large-Scale Structural Coloration of Textiles. Adv. Funct. Mater. 2021, 31, 2010746. doi: 10.1002/adfm.202010746
- Wang, X.H.; Liang, X.H.; Li, Y.C.; Li, X.Y.; Liu, G.J.; Hu, M.G.; Liu, Y.J.; Huang, Y.; Zhou, L.; Zhou, W.L.; et al. Chameleon-Inspired Structural Coloration of Textiles with Non-Close-Packed Photonic Crystals for High Color Saturation and Color Fastness. Chem. Eng. J. 2024, 483, 149053. doi: 10.1016/j.cej.2024.149053
- Zhang, X.; Yin, T.; Ge, J.P. Thermochromic Photonic Crystal Paper with Integrated Multilayer Structure and Fast Thermal Response: A Waterproof and Mechanically Stable Material for Structural-Colored Thermal Printing. Adv. Mater. 2024, 36, 2309344. doi: 10.1002/adma.202309344
- Lee, I.; Kim, D.; Kal, J.; Baek, H.; Kwak, D.; Go, D.; Kim, E.; Kang, C.; Chung, J.; Jang, Y.; et al. Quasi-Amorphous Colloidal Structures for Electrically Tunable Full-Color Photonic Pixels with Angle-Independency. Adv. Mater. 2010, 22, 4973–4977. doi: 10.1002/adma.201001954
- Hu, Y.; Yang, D.P.; Ma, D.K.; Huang, S.M. Extremely Sensitive Mechanochromic Photonic Crystals with Broad Tuning Range of Photonic Bandgap and Fast Responsive Speed for High-Resolution Multicolor Display Applications. Chem. Eng. J. 2022, 429, 132342. doi: 10.1016/j.cej.2021.132342
- Hu, Y.; Yang, D.P.; Ma, D.K.; Huang, S.M. Liquid, Transparent, and Antideformable Thermochromic Photonic Crystals for Displays. Adv. Opt. Mater. 2022, 10, 2200769. doi: 10.1002/adom.202200769
- Li, Y.; Long, Y.; Yang, G.Q.; Tung, C.H.; Song, K. Tunable Amplified Spontaneous Emission Based on Liquid Magnetically Responsive Photonic Crystals. J. Mater. Chem. C 2019, 7, 3740–3743. doi: 10.1039/C8TC05763J
- Li, Z.W.; Yin, Y.D. Stimuli-Responsive Optical Nanomaterials. Adv. Mater. 2019, 31, 1807061. doi: 10.1002/adma.201807061
- Clark, N.A.; Hurd, A.J.; Ackerson, B.J. Single Colloidal Crystals. Nature 1979, 281, 57–60. doi: 10.1038/281057a0
- Luck, W.A.P.; Stranski, I.N. Kristallstrukturen Aus Nichtmolekularen Bausteinen. Phys. Blätter 1967, 23, 304–313. doi: 10.1002/phbl.19670230704
- Yethiraj, A.; van Blaaderen, A. A Colloidal Model System with An Interaction Tunable from Hard Sphere to Soft and Dipolar. Nature 2003, 421, 513–517. doi: 10.1038/nature01328
- Wang, C.; Zhang, X.; Zhu, H.M.; Fu, Q.Q.; Ge, J.P. Liquid-Liquid Extraction: A Universal Method to Synthesize Liquid Colloidal Photonic Crystals. J. Mater. Chem. C 2020, 8, 989–995. doi: 10.1039/C9TC05895H