Downloads

Additional Files

Li, M., Wang, S., Shen, R., Xie, Y., Zhang, Y.-M., & Zhang, S. X.-A. Intrinsically Multi-Color Device Based on Dynamic Cooperation of Molecular Switches and Metal Ions. Materials and Interfaces. 2025, 2(1), 23–31. doi: https://doi.org/10.53941/mi.2025.100003

Article

Intrinsically Multi-Color Device Based on Dynamic Cooperation of Molecular Switches and Metal Ions

Min Li, Shuo Wang*, Ruipeng Shen, Yigui Xie, Yu-Mo Zhang and Sean Xiao-An Zhang*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

*Address correspondence to: wangshuo@jlu.edu.cn and seanzhang@jlu.edu.cn

Received: 6 January 2025; Revised: 5 February 2025; Accepted: 11 February 2025; Published: 19 February 2025

Abstract: Multi-color electrochromic material is a long-expected and extremely challenging material, which is important for electrochromic technology to be applied in adaptive camouflage, augmented reality, transparent display, etc. Here, an intrinsically multi-color indirect-electrochromic material based on supramolecular interactions of unusual multi-state molecular switch and metal ion was developed, combining the advantage of multi-state of molecular switch and chemical stability of metal ion. Related prototype device, with transparent intrinsic colorless, magenta, cyan and various mixed colors, have been explored and demonstrated. The mechanism was based on the dynamic coordination of multiple metal ions and single-molecular-dual-switches within fragile supramolecular clusters. Wherein, the color and lightness could be controlled simply by the bias applied, with abilities such as transmittance change (41%), coloring time (7.8 s), coloration efficiency (>100 cm2/C), and reversibility (>600 test cycles, no abnormal changes). The prototype device was fabricated to show the potential to be used in low energy consumption display.

Keywords:

electrochromism intrinsic multi-color device leuco dye metal ion dynamic coordination

References

  1. Beaujuge, P.M.; Ellinger, S.; Reynolds, J.R. The Donor–Acceptor Approach Allows a Black-to-Transmissive Switching Polymeric Electrochrome. Nat. Mater. 2008, 7, 795. doi: 10.1038/nmat2272
  2. Rosseinsky, D.R.; Mortimer, R.J. Electrochromic Systems and the Prospects for Devices. Adv. Mater. 2001, 13, 783. doi: 10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
  3. Grätzel, M. Ultrafast Colour Displays. Nature 2001, 409, 575. doi: 10.1038/35054655
  4. Yu, H.; Qi, M.; Wang, J.; Yin, Y.; He, Y.; Meng, H.; Huang, W. A Feasible Strategy for the Fabrication of Camouflage Electrochromic Fabric and Unconventional Devices. Electrochem. Commun. 2019, 102, 31. doi: 10.1016/j.elecom.2019.03.006
  5. Yu, H.; Shao, S.; Yan, L.; Meng, H.; He, Y.; Yao, C.; Xu, P.; Zhang, X.; Hu, W.; Huang, W. Side-Chain Engineering of Green Color Electrochromic Polymer Materials: Toward Adaptive Camouflage Application. J. Mater. Chem. C 2016, 4, 2269. doi: 10.1039/C6TC00197A
  6. Fu, H.; Yan, S.; Yang, T.; Yin, M.; Zhang, L.; Shao, X.; Dong, Y.; Li, W.; Zhang, C. New Dual Conjugated Polymer Electrochromic Device with Remarkable Yellow-to-Green Switch for Adaptive Camouflage. Chem. Eng. J. 2022, 438, 135455. doi: 10.1016/j.cej.2022.135455
  7. Sarmah, S.; Kashyap, S.S.; Bera, M.K. Dual Redox-Responsive Os/Ru-Based Alternated Heterobimetallic Supramolecular Polymer as a Multicolor Electrochromic Material for Camouflage Devices. ACS Appl. Electron. Mater. 2023, 5, 1738. doi: 10.1021/acsaelm.2c01765
  8. Laschuk, N.O.; Ebralidze, I.I.; Easton, E.B.; Zenkina, V.O. Post-Synthetic Color Tuning of the Ultra-Effective and Highly Stable Surface-Confined Electrochromic Monolayer: Shades of Green for Camouflage Materials. ACS Appl. Mater. Interfaces 2021, 13, 39573. doi: 10.1021/acsami.1c09863
  9. Zhao, G.; Wang, W.; Wang, X.; Xia, X.; Gu, C.; Tu, J. A Multicolor Electrochromic Film Based on a SnO2/V2O5 Core/Shell Structure for Adaptive Camouflage. J. Mater. Chem. C 2019, 7, 5702. doi: 10.1039/C9TC01073D
  10. Gu, C.; Yan, Y.; He, J.; Pu, D.; Chen, L.; Zhang, Y.-M.; Zhang, S.X.-A. Transparent and Energy-Efficient Electrochromic AR Display with Minimum Crosstalk Using the Pixel Confinement Effect. Device 2023, 1, 100126. doi: 10.1016/j.device.2023.100126
  11. Kim, G.W.; Kim, Y.C.; Ko, I.J.; Park, J.H.; Bae, H.W.; Lampande, R.; Kwon, J.H. High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display. Adv. Opt. Mater. 2018, 6, 1701382. doi: 10.1002/adom.201701382
  12. Zhang, W.; Li, H.; Yu, W.W.; Elezzabi, A.Y. Transparent Inorganic Multicolour Displays Enabled by Zinc-Based Electrochromic Devices. Light Sci. Appl. 2020, 9, 121. doi: 10.1038/s41377-020-00366-9
  13. Wang, B.; Zhao, F.; Zhang, W.; Li, C.; Hu, K.; Carnio, B.N.; Liu, L.; Yu, W.W.; Elezzabi, A.Y.; Li, H. Inhibiting Vanadium Dissolution of Potassium Vanadate for Stable Transparent Electrochromic Displays. Small Sci. 2023, 3, 2300046. doi: 10.1002/smsc.202300046
  14. Wang, Y.; Shen, R.; Wang, S.; Chen, Q.; Gu, C.; Zhang, W.; Yang, G.; Chen, Q.; Zhang, Y.-M.; Zhang, S.X.-A. A See-through Electrochromic Display via Dynamic Metal-Ligand Interactions. Chem 2021, 7, 1308. doi: 10.1016/j.chempr.2021.02.005
  15. Wang, Y.; Shen, R.; Wang, S.; Zhang, Y.; Zhang, S.X. Dynamic Metal–Ligand Interaction of Synergistic Polymers for Bistable See-Through Electrochromic Devices. Adv. Mater. 2022, 34, 2104413. doi: 10.1002/adma.202104413
  16. Zhao, F.; Zhao, J.; Zhang, Y.; Wang, X.; Wang, W. Self-powered quasi-solid-state electrochromic devices for optical information encryption. J. Mater. Chem. C 2021, 9, 7958. doi: 10.1039/D1TC01958A
  17. Alesanco, Y.; Viñuales, A.; Palenzuela, J.; Odriozola, I.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Multicolor Electrochromics: Rainbow-Like Devices. ACS Appl. Mater. Interfaces 2016, 8, 14795. doi: 10.1021/acsami.6b01911
  18. Zhuang, Y.; Li, J.; Zhu, M.; Li, F.; Liu, S.; Zhao, Q. Electrochromism and Electrofluorochromism Based on Viologen Derivative with 1,10-Phenanthroline Moiety for Multicolor Large-Area and Patterned Display. Adv. Mater. Technol. 2023, 8, 2301092. doi: 10.1002/admt.202301092
  19. Choi, Y.; Kim, K.-W.; In, Y.R.; Tang, X.; Kim, P.; Quy, V.H.V.; Kim, Y.M.; Lee, J.; Choi, C.; Jung, C.; et al. Multicolor, Dual-Image, Printed Electrochromic Displays Based on Tandem Configuration. Chem. Eng. J. 2022, 429, 132319. doi: 10.1016/j.cej.2021.132319
  20. Song, R.; Li, G.; Zhang, Y.; Rao, B.; Xiong, S.; He, G. Novel Electrochromic Materials Based on Chalcogenoviologens for Smart Windows, E-Price Tag and Flexible Display with Improved Reversibility and Stability. Chem. Eng. J. 2021, 422, 130057. doi: 10.1016/j.cej.2021.130057
  21. Tong, Z.; Lv, H.; Zhang, X.; Yang, H.; Tian, Y.; Li, N.; Zhao, J.; Li, Y. Novel Morphology Changes from 3D Ordered Macroporous Structure to V2O5 Nanofiber Grassland and Its Application in Electrochromism. Sci. Rep. 2015, 5, 16864. doi: 10.1038/srep16864
  22. Zhang, Y.-M.; Wang, X.; Zhang, W.; Li, W.; Fang, X.; Yang, B.; Li, M.; Zhang, S.X.-A. A Single-Molecule Multicolor Electrochromic Device Generated through Medium Engineering. Light Sci. Appl. 2015, 4, e249. doi: 10.1038/lsa.2015.22
  23. Kim, K.-W.; Lee, J.K.; Tang, X.; Lee, Y.; Yeo, J.; Moon, H.C.; Lee, S.W.; Kim, S.H. Novel Triphenylamine Containing Poly-Viologen for Voltage-Tunable Multi-Color Electrochromic Device. Dyes Pigment. 2021, 190, 109321. doi: 10.1016/j.dyepig.2021.109321
  24. Wang, J.-L.; Liu, J.-W.; Sheng, S.-Z.; He, Z.; Gao, J.; Yu, S.-H. Manipulating Nanowire Assemblies toward Multicolor Transparent Electrochromic Device. Nano Lett. 2021, 21, 9203. doi: 10.1021/acs.nanolett.1c03061
  25. Xue, W.; Zhang, Y.; Liu, F.; Dou, Y.; Yan, M.; Wang, W. Self-powered flexible multicolor electrochromic devices for information displays. Research 2023, 6, 0227. doi: 10.34133/research.0227
  26. Laschuk, N.O.; Ahmad, R.; Ebralidze, I.I.; Poisson, J.; Easton, E.B.; Zenkina, O.V. Multichromic Monolayer Terpyridine-Based Electrochromic Materials. ACS Appl. Mater. Interfaces 2020, 12, 41749. doi: 10.1021/acsami.0c11478
  27. Malik, N.; Lahav, M.; van der Boom, M.E. Electrochromic Metallo–Organic Nanoscale Films: A Molecular Mix and Match Approach to Thermally Robust and Multistate Solid-State Devices. Adv. Electron. Mater. 2020, 6, 2000407. doi: 10.1002/aelm.202000407
  28. Tsuboi, A.; Nakamura, K.; Kobayashi, N. A Localized Surface Plasmon Resonance-Based Multicolor Electrochromic Device with Electrochemically Size-Controlled Silver Nanoparticles. Adv. Mater. 2013, 25, 3197. doi: 10.1002/adma.201205214
  29. Tsuboi, A.; Nakamura, K.; Kobayashi, N. Multicolor Electrochromism Showing Three Primary Color States (Cyan–Magenta–Yellow) Based on Size- and Shape-Controlled Silver Nanoparticles. Chem. Mater. 2014, 26, 6477. doi: 10.1021/cm5039039
  30. Wang, Z.; Wang, X.; Cong, S.; Chen, J.; Sun, H.; Chen, Z.; Song, G.; Geng, F.; Chen, Q.; Zhao, Z. Towards Full-Colour Tunability of Inorganic Electrochromic Devices Using Ultracompact Fabry-Perot Nanocavities. Nat. Commun. 2020, 11, 302. doi: 10.1038/s41467-019-14194-y
  31. Wu, M.; Li, Y.; Yuan, W.; De Bo, G.; Cao, Y.; Chen, Y. Cooperative and Geometry-Dependent Mechanochromic Reactivity through Aromatic Fusion of Two Rhodamines in Polymers. J. Am. Chem. Soc. 2022, 144, 17120. doi: 10.1021/jacs.2c07015
  32. Shirasaki, Y.; Okamoto, Y.; Muranaka, A.; Kamino, S.; Sawada, D.; Hashizume, D.; Uchiyama, M. Fused-Fluoran Leuco Dyes with Large Color-Change Derived from Two-Step Equilibrium: Iso-Aminobenzopyranoxanthenes. J. Org. Chem. 2016, 81, 12046. doi: 10.1021/acs.joc.6b02403
  33. Li, A.; Chu, N.; Huang, L.; Han, L.; Geng, Y.; Xu, S.; Pan, L.; Cui, H.; Xu, W.; Ma, Z. Remarkable responsive behaviors of iso-aminobenzopyranoxanthenes: Protonation effect, photochromism and piezochromism. Dye. Pigment. 2019, 162, 831. doi: 10.1016/j.dyepig.2018.11.014
  34. Gu, C.; Wang, X.; Jia, A.-B.; Zheng, H.; Zhang, W.; Wang, Y.; Li, M.; Zhang, Y.-M.; Zhang, S.X.-A. A strategy of stabilization via active energy-exchange for bistable electrochromic displays. CCS Chem. 2021, 4, 2757. doi: 10.31635/ccschem.021.202101180