Downloads

Additional Files

Kaabipour, S., Neal, F., & Hemmati, S. High-Yield, Environmentally-Friendly, and Sustainable Synthesis of Silver Nanowires Using Tannic Acid and Their Application in Conductive Ink Preparation: Economic Analysis and Rheological Investigation. Materials and Interfaces. 2025, 2(1), 32–45. doi: https://doi.org/10.53941/mi.2025.100004

Article

High-Yield, Environmentally-Friendly, and Sustainable Synthesis of Silver Nanowires Using Tannic Acid and Their Application in Conductive Ink Preparation: Economic Analysis and Rheological Investigation

Sina Kaabipour 1, Finley Neal 2, and Shohreh Hemmati 2,*

1 School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA

2 School of Mathematics and Natural Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA

* Correspondence: shohreh.hemmati@usm.edu

Received: 25 November 2024; Revised: 15 January 2025; Accepted: 11 February 2025; Published: 20 February 2025

Abstract: Silver nanowires (AgNWs) have garnered significant attention during the past decade thanks to their applications in conductive inks used for electronic applications. The polyol process, widely used for AgNW synthesis, is known for its effectiveness in producing high aspect ratio and high yield nanowires. However, this process suffers from drawbacks such as high energy consumption and use of unsustainable reagents derived from nonrenewable resources, which makes its large-scale utilization and economic feasibility challenging. In contrast, green synthesis methods offer potential solutions by employing environmentally friendly and cost-effective approaches. In this study, we offer a high-yield (90%) approach for the inexpensive, environmentally friendly, and sustainable synthesis of AgNWs, and show that the production cost per gram of AgNWs can be reduced by 31.72% compared to the polyol process. In addition, we investigate the rheological behavior of the synthesized AgNW-based conductive ink under screen printing and direct writing conditions using flow sweep, peak hold, and frequency sweep tests. The rheological behavior of the AgNWbased conductive ink provides valuable information regarding its use for various printing applications. The conductive ink demonstrated a shear-thinning thixotropic behavior for all silver nanostructure contents (2, 5, 10, and 20 wt.%), and all temperatures (25, 30, and 40 °C). It was observed that direct writing is better suited for printing inks with low colloidal content due to its lower shear rate, whereas screen printing is more effective for high-content, high-viscosity inks because it utilizes higher shear rates. The proposed cheaper and more sustainable method can serve as a promising alternative for industrial conductive ink manufacturing for printed electronic appliances such as printed circuit boards (PCBs) and flexible transparent conductive films (TCFs).

Keywords:

silver nanowires green chemistry sustainability rheology conductive ink screen printing direct writing

References

  1. Hasan, M.M.; Hossain, M.M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. J. Mater. Sci. 2021, 56, 14900–14942. https://doi.org/10.1007/s10853-021-06248-8.
  2. Manjakkal, L.; Núñez, C.G.; Dang, W.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 2018, 51, 604–612. https://doi.org/10.1016/j.nanoen.2018.06.072.
  3. Lin, C.H.; Fu, H.C.; Cheng, B.; Tsai, M.L.; Luo, W.; Zhou, L.; Jang, S.H.; Hu, L.; He, J.H. A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. NPJ 2D Mater. Appl. 2018, 2, 23. https://doi.org/10.1038/s41699-018-0070-6.
  4. Tseberlidis, G.; Trifiletti, V.; Le Donne, A.; Frioni, L.; Acciarri, M.; Binetti, S. Kesterite solar-cells by drop-casting of inorganic sol–gel inks. Sol. Energy 2020, 208, 532–538. https://doi.org/10.1016/j.solener.2020.07.093.
  5. Lee, S.; Jang, J.; Park, T.; Park, Y.M.; Park, J.S.; Kim, Y.K.; Lee, H.K.; Jeon, E.C.; Lee, D.K.; Ahn, B.; et al. Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells. ACS Appl. Mater. Interfaces 2020, 12, 6169–6175. https://doi.org/10.1021/acsami.9b17168.
  6. Gonzalez-Garcia, L.; Maurer, J.H.M.; Reiser, B.; Kanelidis, I.; Kraus, T. Ultrathin gold nanowires for transparent electronics: Breaking barriers. Procedia Eng. 2016, 141, 152–156. https://doi.org/10.1016/j.proeng.2015.08.1120.
  7. Yang, X.; Du, D.; Wang, Y.; Zhao, Y. Silver nanowires inks for flexible circuit on photographic paper substrate. Micromachines 2018, 10, 22. https://doi.org/10.3390/mi10010022.
  8. Yang, L.; Xu, X.; Yuan, Y.; Li, Z.; He, S. Meter-scale transparent conductive circuits based on silver nanowire networks for rigid and flexible transparent light-emitting diode screens. Opt. Mater. Express 2019, 9, 4483–4496. https://doi.org/10.1364/OME.9.004483.
  9. Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165– 168. https://pubs.acs.org/doi/10.1021/nl010093y.
  10. Parente, M.; Van Helvert, M.; Hamans, R.F.; Verbroekken, R.; Sinha, R.; Bieberle-Hütter, A.; Baldi, A. Simple and fast high-yield synthesis of silver nanowires. Nano Lett. 2020, 20, 5759–5764. https://doi.org/10.1021/acs.nanolett.0c01565.
  11. Shi, Y.; He, L.; Deng, Q.; Liu, Q.; Li, L.; Wang, W.; Xin, Z.; Liu, R. Synthesis and applications of silver nanowires for transparent conductive films. Micromachines 2019, 10, 330. https://doi.org/10.3390/mi10050330.
  12. Staples, C.A.; Williams, J.B.; Craig, G.R.; Roberts, K.M. Fate, effects and potential environmental risks of ethylene glycol: A review. Chemosphere 2001, 43, 377–383. https://doi.org/10.1016/S0045-6535(00)00148-X.
  13. Zeng, P.; Tian, B.; Tian, Q.; Yao, W.; Li, M.; Wang, H.; Feng, Y.; Liu, L.; Wu, W. Screen-printed, low-cost, and patterned flexible heater based on Ag fractal dendrites for human wearable application. Adv. Mater. Technol. 2019, 4, 1800453. https://doi.org/10.1002/admt.201800453.
  14. Faddoul, R.; Reverdy-Bruas, N.; Blayo, A. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2012, 177, 1053–1066. https://doi.org/10.1016/j.mseb.2012.05.015.
  15. Ke, S.H.; Xue, Q.W.; Pang, C.Y.; Guo, P.W.; Yao, W.J.; Zhu, H.P.; Wu, W. Printing the ultra-long Ag nanowires inks onto the flexible textile substrate for stretchable electronics. Nanomaterials 2019, 9, 686. https://doi.org/10.3390/infrastructures4020020.
  16. Li, W.; Yang, S.; Shamim, A. Screen printing of silver nanowires: Balancing conductivity with transparency while maintaining flexibility and stretchability. NPJ Flex. Electron. 2019, 3, 13. https://doi.org/10.1038/s41528-019-0057-1.
  17. He, X.; Shen, G.; Xu, R.; Yang, W.; Zhang, C.; Liu, Z.; Chen, B.; Liu, J.; Song, M. Hexagonal and square patterned silver nanowires/PEDOT composite grids by screen printing for uniformly transparent heaters. Polymers 2019, 11, 468. https://doi.org/10.3390/polym11030468.
  18. Hemmati, S.; Barkey, D.P.; Gupta, N. Rheological behavior of silver nanowire conductive inks during screen printing. J. Nanoparticle Res. 2016, 18, 249. https://doi.org/10.1007/s11051-016-3561-4.
  19. Liang, J.; Tong, K.; Pei, Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986–5996. https://doi.org/10.1002/adma.201600772.
  20. Patil, P.; Patil, S.; Kate, P.; Kulkarni, A.A. Inkjet printing of silver nanowires on flexible surfaces and methodologies to improve the conductivity and stability of the printed patterns. Nanoscale Adv. 2021, 3, 240–248. https://doi.org/10.1039/d0na00684j.
  21. Huang, Q.; Al-Milaji, K.N.; Zhao, H. Inkjet printing of silver nanowires for stretchable heaters. ACS Appl. Nano Mater. 2018, 1, 4528–4536. https://doi.org/10.1021/acsanm.8b00830.
  22. Lee, H.H.; Chou, K.S.; Huang, K.C. Inkjet printing of nanosized silver colloids. Nanotechnology 2005, 16, 2436–2441. https://doi.org/10.1088/0957-4484/16/10/074.
  23. Liu, Z.; Su, Y.; Varahramyan, K. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films 2005, 478, 275–279. https://doi.org/10.1016/j.tsf.2004.11.077.
  24. Finn, D.J.; Lotya, M.; Coleman, J.N. Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 2015, 7, 9254–9261. https://doi.org/10.1021/acsami.5b01875.
  25. Kuzmenko, V.; Karabulut, E.; Pernevik, E.; Enoksson, P.; Gatenholm, P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr. Polym. 2018, 189, 22–30. https://doi.org/10.1016/j.carbpol.2018.01.097.
  26. Barnes, H.A. Thixotropy—A review. J. Nonnewton Fluid Mech. 1997, 70, 1–33. https://doi.org/10.1016/S03770257(97)00004-9.
  27. Mallik, S. Study of the Time-Dependent Rheological Behaviour of Lead-Free Solder Pastes and Flux Mediums Used for Flip-Chip Assembly Applications. Ph.D. Thesis, University of Greenwich, London, UK, 2009.
  28. Hemmati, S.; Barkey, D.P.; Gupta, N.; Banfield, R. Synthesis and characterization of silver nanowire suspensions for printable conductive media. ECS J. Solid State Sci. Technol. 2015, 4, 3075–3079. https://doi.org/10.1149/2.0121504jss.
  29. Rudež, R.; Pavlič, J.; Bernik, S. Preparation and influence of highly concentrated screen-printing inks on the development and characteristics of thick-film varistors. J. Eur. Ceram Soc. 2015, 35, 3013–3023. https://doi.org/10.1016/j.jeurceramsoc.2015.04.035.
  30. Smay, J.E.; Gratson, G.M.; Shepherd, R.F.; Cesarano, J.; Lewis, J.A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 2002, 14, 1279–1283. https://doi.org/10.1002/1521-4095(20020916)14:18<1279::AIDADMA1279>3.0.CO;2-A.
  31. Nair, N.M.; Daniel, K.; Vadali, S.C.; Ray, D.; Swaminathan, P. Direct writing of silver nanowire-based ink for flexible transparent capacitive touch pad. Flex. Print. Electron. 2019, 4, 045001. https://doi.org/10.1088/2058-8585/ab4b04.
  32. Martin, G.D.; Hoath, S.D.; Hutchings, I.M. Inkjet printing—The physics of manipulating liquid jets and drops. J. Phys. Conf. Ser. 2008, 105, 012001. https://doi.org/10.1088/1742-6596/105/1/012001.
  33. Yan, P.; Brown, E.; Su, Q.; Li, J.; Wang, J.; Xu, C.; Zhou, C.; Lin, D. 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson’s Ratio. Small 2017, 13, 1701756. https://doi.org/10.1002/smll.201701756.
  34. Compton, B.G.; Lewis, J.A. 3D-printing of lightweight cellular composites. Adv. Mater. 2014, 26, 5930–5935. https://doi.org/10.1002/adma.201401804.
  35. Kaabipour, S.; Hemmati, S. Green, sustainable, and room-temperature synthesis of silver nanowires using tannic acid— Kinetic and parametric study. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 641, 128495. https://doi.org/10.1016/j.colsurfa.2022.128495.
  36. Kaabipour, S.; Hemmati, S. Continuous, green, and room-temperature synthesis of silver nanowires in a helically-coiled millifluidic reactor. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 659, 130806. https://doi.org/10.1016/j.colsurfa.2022.130806.
  37. Hemmati, S.; Barkey, D.P. Parametric study, sensitivity analysis, and optimization of polyol synthesis of silver nanowires. ECS J. Solid State Sci. Technol. 2017, 6, 132–137. https://doi.org/10.1149/2.0141704jss.
  38. U.S Energy Information Administration (2024). Available online: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a (accessed on 5 January 2025).
  39. Hong, H.; Jiyong, H.; Moon, K.S.; Yan, X.; Wong, C.P. Rheological properties and screen printability of UV curable conductive ink for flexible and washable E-textiles. J. Mater. Sci. Technol. 2021, 67, 145–155. https://doi.org/10.1016/j.jmst.2020.06.033.
  40. Dzisah, P.; Ravindra, N.M. Modeling of Rheological Properties of Metal Nanoparticle Conductive Inks for Printed Electronics. In TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 964–979. https://doi.org/10.1007/978-3-030-65261-6_86.
  41. Yoon, I.S.; Oh, Y.; Kim, S.H.; Choi, J.; Hwang, Y.; Ju, B.K. 3D Printing of Self-Wiring Conductive Ink with High Stretchability and Stackability for Customized Wearable Devices. Adv. Mater. Technol. 2019, 4, 1900363. https://doi.org/10.1002/admt.201900363.
  42. Hatala, M.; Gemeiner, P.; Hvojnik, M.; Mikula, M. The effect of the ink composition on the performance of carbonbased conductive screen printing inks. J. Mater. Sci. Mater. Electron. 2019, 30, 1034–1044. https://doi.org/10.1007/s10854-018-0372-7.
  43. Ahmed, S.F.; Hasan, A.R. Rheology of low-rank coal-water slurries at both high and low shear rates. Fuel 1993, 72, 763– 769. https://doi.org/10.1016/0016-2361(93)90077-F.