
Downloads
Download




This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Perovskite Thin Films Solar Cells: The Gas Quenching Method
Maria Azhar, Yenal Yalcinkaya, Daniele T. Cuzzupè, Yekitwork Abebe Temitmie, Muhammad Irfan Haider and Lukas Schmidt-Mende *
Department of Physics, University of Konstanz, 78457 Konstanz, Germany
* Correspondence: lukas.schmidt-mende@uni-konstanz.de
Received: 18 November 2024; Revised: 6 January 2025; Accepted: 6 February 2025; Published: 10 February 2025
Abstract: Perovskite solar cells (PSCs) are emerging as a promising technology for next-generation solar energy due to their high efficiency and cost-effectiveness. A critical step in the production of PSCs is the deposition of the perovskite absorber layer, the quality of which has a direct impact on the performance of device. Traditionally, quenching with an antisolvent is the main technique for the crystallization of perovskite film. However, gas quenching, an alternative approach in which pressurized gases (typically N2) are used to supersaturate the perovskite precursor solution, has shown significant advantages. In contrast to quenching with antisolvents, gas quenching is more environmentally friendly, reduces chemical consumption, improves reproducibility, and offers better scalability for large-scale production. This review examines recent advances in gas quenching to produce high-quality perovskite films and compares the results with those achieved with antisolvent quenching. We highlight the performance benefits, environmental impact, and commercial scalability of gas quenching, and emphasize its potential to become the preferred method for industrial PSC production.
Keywords:
perovskite solar cell gas quenching solvent annealing large-area processing
References
- NREL, Best Research-Cell Efffciencies. Available online: https://www.nrel.gov/pv/cell-efffciency.html (accessed on January 2025).
- Kojima, A.; Teshima, K.; Shirai, Y.; et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
- Feng, J.; Wang, X.; Li, J.; et al. Resonant perovskite solar cells with extended band edge. Nat. Commun. 2023, 14, 5392.
- Temitmie, Y.A.; Haider, M.I.; Cuzzupè, D.T.; et al. Overcoming the Open-Circuit Voltage Losses in Narrow Bandgap Perovskites for All-Perovskite Tandem Solar Cells. ACS Mater. Lett. 2024, 6, 5190–5198.
- Chiang, C.H.; Wu, C.G. Bulk heterojunction perovskite–PCBM solar cells with high ffll factor. Nat. Photonics 2016, 10, 196–200.
- Ergen, O.; Gilbert, S.M.; Pham, T.; et al. Graded bandgap perovskite solar cells. Nat. Mater. 2017, 16, 522–525.
- Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; et al. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249.
- Qin, K.; Dong, B.; Wang, S. Improving the stability of metal halide perovskite solar cells from material to structure. J. Energy Chem. 2019, 33, 90–99.
- Wang, K.; Zheng, L.; Zhu, T.; et al. Efffcient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy 2019, 61, 352–360.
- Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nature Energy 2016, 1, 1–8.
- Azhar, M.; Mubeen, M.; Mukhtar, M.; et al. Damping the phase segregation in mixed halide perovskites: Inffuence of X-site anion. Mater. Chem. Phys. 2022, 287, 126335.
- Tavakoli, M.M.; Yadav, P.; Prochowicz, D.; et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efffcient planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803587.
- Zhang, W.; Zhang, T.; Qin, L.; et al. Anti-solvent engineering to rapid purify PbI2 for efffcient perovskite solar cells. Chem. Eng. J. 2024, 479, 147838.
- Zhao, P.; Kim, B.J.; Ren, X.; et al. Antisolvent with an ultrawide processing window for the one-step fabrication of efffcient and large-area perovskite solar cells. Adv. Mater. 2018, 30, 1802763.
- Jin, S.; Wei, Y.; Huang, F.; et al. Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent. J. Power Sources 2018, 404, 64–72.
- Subhani, W.S.; Wang, K.; et al. Anti-solvent engineering for efffcient semitransparent CH3NH3PbBr3 perovskite solar cells for greenhouse applications. J. Energy Chem. 2019, 34, 12–19.
- Taylor, A.D.; Sun, Q.; Goetz, K.P.; et al. A general approach to high-efffciency perovskite solar cells by any antisolvent. Nat. Commun. 2021, 12, 1878.
- Paek, S.; Schouwink, P.; Athanasopoulou, E.N.; et al. From nano-to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 2017, 29, 3490–3498.
- Ghosh, S.; Mishra, S.; Singh, T. Antisolvents in perovskite solar cells: Importance, issues, and alternatives. Adv. Mater. Interfaces 2020, 7, 2000950.
- Cuzzupè, D.T.; O¨ z, S.D.; Ling, J.; et al. Understanding the Methylammonium Chloride-Assisted Crystallization for Improved Performance of Lead-Free Tin Perovskite Solar Cells. Solar RRL 2023, 7, 2300770.
- Kaczaral, S.C.; Morales, D.A.; Schreiber, S.W.; et al. Improved reproducibility of metal halide perovskite solar cells via automated gas quenching. APL Energy 2023, 1, 036112.
- Gou, Y.; Tang, S.; Yun, C.; et al. Research progress of green antisolvent for perovskite solar cells. Mater. Horiz. 2024, 11, 3465–3481.
- Huang, F.; Dkhissi, Y.; Huang, W.; et al. Gas-assisted preparation of lead iodide perovskite fflms consisting of a monolayer of single crystalline grains for high efffciency planar solar cells. Nano Energy 2014, 10, 10–18.
- Deng, Y.; Van Brackle, C.H.; Dai, X.; et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic fflms. Sci. Adv. 2019, 5, eaax7537.
- Subbiah, A.S.; Torres Merino, L.V.; Pininti, A.R.; et al. Enhancing the Performance of Blade-Coated Perovskite/Silicon Tandems via Molecular Doping and Interfacial Energy Alignment. ACS Energy Lett. 2024, 9, 727–731.
- Geistert, K.; Ternes, S.; Ritzer, D.B.; et al. Controlling Thin Film Morphology Formation during Gas Quenching of Slot-Die Coated Perovskite Solar Modules. ACS Appl. Mater. Interfaces 2023, 15, 52519–52529.
- Ternes, S.; Mohacsi, J.; Lu¨dtke, N.; et al. Drying and coating of perovskite thin fflms: How to control the thin fflm morphology in scalable dynamic coating systems. ACS Appl. Mater. Interfaces 2022, 14, 11300–11312.
- Xu, K.; Al-Ashouri, A.; Peng, Z.W.; et al. Slot-die coated triple-halide perovskites for efffcient and scalable perovskite/silicon tandem solar cells. ACS Energy Lett. 2022, 7, 3600–3611.
- LaMer, V.K.; Dinegar, R.H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.
- Qiu, S.; Majewski, M.; Dong, L.; et al. In Situ Probing the Crystallization Kinetics in Gas-Quenching-Assisted Coating of Perovskite Films. Adv. Energy Mater. 2024, 14, 2303210.
- Liu, C.; Cheng, Y.B.; Ge, Z. Understanding of perovskite crystal growth and fflm formation in scalable deposition processes. Chem. Soc. Rev. 2020, 49, 1653–1687.
- Wang, Z.; Duan, X.; Zhang, J.; et al. Manipulating the crystallization kinetics of halide perovskites for large-area solar modules. Commun. Mater. 2024, 5, 131.
- Song, S.; Ho¨rantner, M.T.; Choi, K.; et al. Inducing swift nucleation morphology control for efffcient planar perovskite solar cells by hot-air quenching. J. Mater. Chem. A 2017, 5, 3812–3818.
- Kim, M.; Kim, G.H.; Oh, K.S.; et al. High-temperature–short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano 2017, 11, 6057–6064.
- Zheng, D.; Rafffn, F.; Volovitch, P.; et al. Control of perovskite fflm crystallization and growth direction to target homogeneous monolithic structures. Nat. Commun. 2022, 13, 6655.
- Chen, S.; Xiao, X.; Chen, B.; et al. Crystallization in one-step solution deposition of perovskite fflms: Upward or downward? Sci. Adv. 2021, 7, eabb2412.
- Xiao, M.; Huang, F.; Huang, W.; et al. A fast deposition-crystallization procedure for highly efffcient lead iodide perovskite thin-fflm solar cells. Angew. Chem. Int. Ed. 2014, 53, 9898–9903.
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.
- Lee, K.M.; Lin, C.J.; Liou, B.Y.; et al. Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 172, 368–375.
- Lin, K.F.; Chang, S.H.; Wang, K.H.; et al. Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Sol. Energy Mater. Sol. Cells 2015, 141, 309–314.
- Ahn, N.; Son, D.Y.; Jang, I.H.; et al. Highly reproducible perovskite solar cells with average efffciency of 18.3% and best efffciency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.
- Lee, J.W.; Dai, Z.; Lee, C.; et al. Tuning molecular interactions for highly reproducible and efffcient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 2018, 140, 6317–6324.
- Cohen, B.E.; Aharon, S.; Dymshits, A.; et al. Impact of antisolvent treatment on carrier density in efffcient hole-conductorfree perovskite-based solar cells. J. Phys. Chem. C 2016, 120, 142–147.
- Etgar, L.; Gao, P.; Xue, Z.; et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.
- Mei, A.; Li, X.; Liu, L.; et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.
- Ternes, S.; Laufer, F.; Paetzold, U.W. Modeling and Fundamental Dynamics of Vacuum, Gas, and Antisolvent Quenching for Scalable Perovskite Processes. Adv. Sci. 2024, 11, 2308901.
- Wołowiec-Korecka, E. Development of Quenching Towards Quality Improvement. In Carburising and Nitriding of Iron Alloys; Springer: Berlin, Germany, 2024; pp. 71–85.
- Yu, Y.; Zhang, F.; Hou, T.; et al. A Review on Gas-Quenching Technique for Efffcient Perovskite Solar Cells. Solar RRL 2021, 5, 2100386.
- Fievez, M.; Rana, P.J.S.; Koh, T.M.; et al. Slot-die coated methylammonium-free perovskite solar cells with 18% efffciency. Sol. Energy Mater. Sol. Cells 2021, 230, 111189.
- Du, M.; Zhu, X.; Wang, L.; et al. High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efffciency. Adv. Mater. 2020, 32, 2004979.
- Hou, T.; Zhang, M.; Yu, W.; et al. Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. J. Mater. Chem. A 2022, 10, 2105–2112.
- Conings, B.; Babayigit, A.; Klug, M.T.; et al. A universal deposition protocol for planar heterojunction solar cells with high efffciency based on hybrid lead halide perovskite families. Adv. Materials.-Weinh. 2016, 28, 10701–10709.
- Babayigit, A.; D’Haen, J.; Boyen, H.G.; et al. Gas quenching for perovskite thin fflm deposition. Joule 2018, 2, 1205–1209.
- Tang, S.; Bing, J.; Zheng, J.; et al. Complementary bulk and surface passivations for highly efffcient perovskite solar cells by gas quenching. Cell Rep. Phys. Sci. 2021, 2, 100511.
- Zhang, X.; Eurelings, S.; Bracesco, A.; et al. Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efffcient Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 46803–46811.
- Wu, Y.; Wu, S.; Wang, J.; et al. Facet orientation control of tin-lead perovskite for efffcient all-perovskite tandem solar cells. J. Mater. Sci. Technol. 2025, 213, 118–124.
- Heydarian, M.; Heydarian, M.; Bett, A.J.; et al. Monolithic Two-Terminal Perovskite/Perovskite/Silicon Triple-Junction Solar Cells with Open Circuit Voltage >2.8 V. ACS Energy Lett. 2023, 8, 4186–4192.
- Brinkmann, K.O.; He, J.; Schubert, F.; et al. Extremely robust gas-quenching deposition of halide perovskites on top of hydrophobic hole transport materials for inverted (p–i–n) solar cells by targeting the precursor wetting issue. ACS Appl. Mater. Interfaces 2019, 11, 40172–40179.
- Szostak, R.; Sanchez, S.; Marchezi, P.E.; et al. Revealing the perovskite fflm formation using the gas quenching method by in situ GIWAXS: Morphology, properties, and device performance. Adv. Funct. Mater. 2021, 31, 2007473.
- Sun, X.; Yang, X.; Wang, X.; et al. The effect of pyrrolidone-based ligands in gas-quenching fabrication of FA0.9Cs0.1PbI3 perovskite fflms and solar cells. J. Alloys Compd. 2023, 960, 170670.
- Harnmanasvate, C.; Chanajaree, R.; Rujisamphan, N.; et al. Ambient Gas-Quenching Fabrication of MA-Free Perovskite Solar Cells Enabled by an Eco-Friendly Urea Additive. ACS Appl. Energy Mater. 2023, 6, 10665–10673.
- Werner, J.; Moot, T.; Gossett, T.A.; et al. Improving low-bandgap tin–lead perovskite solar cells via contact engineering and gas quench processing. ACS Energy Lett. 2020, 5, 1215–1223.
- Zhang, X.; Qiu, W.; Apergi, S.; et al. Minimizing the Interface-Driven Losses in Inverted Perovskite Solar Cells and Modules. ACS Energy Lett. 2023, 8, 2532–2542.
- Song, W.; Zhang, X.; Lammar, S.; et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: A Study on the Effects of Volatile A-Cation Additives. ACS Appl. Mater. Interfaces 2022, 14, 27922–27931.
- O¨ cebe, A.; Deveci, H.; ˙Ismail, C.K. Gas-Quenching Approach for Fabricating Cs2 AgBiBr6 Thin Films in Ambient Environment for Lead-Free All-Inorganic Perovskite Solar Cells with Carbon Electrodes. Energy Technol. 2023, 11, 2300407.
- O¨ cebe, A.; ˙Ismail, C.K. From particles to fflms: Production of Cs2 AgBiBr6-based perovskite solar cells and enhancement of cell performance via ionic liquid utilization at the TiO2 /perovskite interface. Dalton Trans. 2024, 53, 1253–1264.
- Zhang, M.; Yun, J.S.; Ma, Q.; et al. High-efffciency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett. 2017, 2, 438–444.
- Cassella, E.J.; Spooner, E.L.; Smith, J.A.; et al. Binary Solvent System Used to Fabricate Fully Annealing-Free Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2203468.
- Razza, S.; Di Giacomo, F.; Matteocci, F.; et al. Perovskite solar cells and large area modules (100 cm2) based on an air ffow-assisted PbI2 blade coating deposition process. J. Power Sources 2015, 277, 286–291.
- Gao, L.L.; Li, C.X.; Li, C.J.; et al. Large-area high-efffciency perovskite solar cells based on perovskite fflms dried by the multi-ffow air knife method in air. J. Mater. Chem. A 2017, 5, 1548–1557.
- Gao, L.L.; Zhang, K.J.; Chen, N.; et al. Boundary layer tuning induced fast and high performance perovskite fflm precipitation by facile one-step solution engineering. J. Mater. Chem. A 2017, 5, 18120–18127.
- Cheng, R.; Chung, C.C.; Zhang, H.; et al. An Air Knife–Assisted Recrystallization Method for Ambient-Process Planar Perovskite Solar Cells and Its Dim-Light Harvesting. Small 2019, 15, 1804465.
- Lee, D.K.; Jeong, D.N.; Ahn, T.K.; et al. Precursor engineering for a large-area perovskite solar cell with >19% efffciency. ACS Energy Lett. 2019, 4, 2393–2401.
- Dai, X.; Deng, Y.; Van Brackle, C.H.; et al. Scalable fabrication of efffcient perovskite solar modules on ffexible glass substrates. Adv. Energy Mater. 2020, 10, 1903108.
- Chung, J.; Kim, S.; Li, Y.; et al. Engineering Perovskite Precursor Inks for Scalable Production of High-Efffciency Perovskite Photovoltaic Modules. Adv. Energy Mater. 2023, 13, 2300595.
- Liang, Q.; Liu, K.; Sun, M.; et al. Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition. Adv. Mater. 2022, 34, 2200276.
- Yue, W.; Yang, H.; Cai, H.; et al. Printable High-Efffciency and Stable FAPbBr3 Perovskite Solar Cells for Multifunctional Building-Integrated Photovoltaics. Adv. Mater. 2023, 35, 2301548.
- Jafarzadeh, F.; Castriotta, L.A.; Rossi, F.D.; et al. All-blade-coated ffexible perovskite solar cells & modules processed in air from a sustainable dimethyl sulfoxide (DMSO)-based solvent system. Sustain. Energy Fuels 2023, 7, 2219–2228.
- Pious, J.K.; Lai, H.; Hu, J.; et al. In Situ Buried Interface Engineering towards Printable Pb–Sn Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 39399–39407.
- Du, T.; Rehm, V.; Qiu, S.; et al. Precursor-Engineered Volatile Inks Enable Reliable Blade-Coating of Cesium–Formamidinium Perovskites Toward Fully Printed Solar Modules. Adv. Sci. 2024, 11, 2401783.
- Hou, T.; Zhang, M.; Sun, X.; et al. Methylammonium-Free Ink for Low-Temperature Crystallization of α-FAPbI3 Perovskite. Adv. Energy Mater. 2024, 14, 2400932.
- Ku¨ffner, J.; Hanisch, J.; Wahl, T.; et al. One-Step Blade Coating of Inverted Double-Cation Perovskite Solar Cells from a Green Precursor Solvent. ACS Appl. Energy Mater. 2021, 4, 11700–11710.
- Fong, P.W.; Hu, H.; Ren, Z.; et al. Printing High-Efffciency Perovskite Solar Cells in High-Humidity Ambient Environment—An In Situ Guided Investigation. Adv. Sci. 2021, 8, 2003359.
- Vesce, L.; Stefanelli, M.; Herterich, J.P.; et al. Ambient Air Blade-Coating Fabrication of Stable Triple-Cation Perovskite Solar Modules by Green Solvent Quenching. Solar RRL 2021, 5, 2100073.
- Vesce, L.; Stefanelli, M.; Rossi, F.; et al. Perovskite solar cell technology scaling-up: Eco-efffcient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating. Prog.Photovolt. Res. Appl. 2024, 32, 115–129.
- Ding, J.; Han, Q.; Ge, Q.Q.; et al. Fully air-bladed high-efffciency perovskite photovoltaics. Joule 2019, 3, 402–416.
- Kistler, S.; Scriven, L. Coating ffows. In Computational Analysis of Polymer Processing; Springer: Berlin, Germany, 1983; pp. 243–299.
- Cotella, G.; Baker, J.; Worsley, D.; et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362–369.
- Kim, J.E.; Jung, Y.S.; Heo, Y.J.; et al. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 2018, 179, 80–86.
- Lee, D.; Jung, Y.S.; Heo, Y.J.; et al. Slot-die coated perovskite fflms using mixed lead precursors for highly reproducible and large-area solar cells. ACS Appl. Mater. Interfaces 2018, 10, 16133–16139.
- Zuo, C.; Vak, D.; Angmo, D.; et al. One-step roll-to-roll air processed high efffciency perovskite solar cells. Nano Energy 2018, 46, 185–192.
- Duarte, V.C.; Andrade, L. Recent Advancements on Slot-Die Coating of Perovskite Solar Cells: The Lab-to-Fab Optimisation Process. Energies 2024, 17, 3896.
- Matondo, J.T.; Hu, H.; Ding, Y.; et al. Slot-Die Coating for Scalable Fabrication of Perovskite Solar Cells and Modules. Adv. Mater. Technol. 2024, 9, 2302082.
- Indirect CO2 Emissions Compensation: Benchmark Proposal for Air Separation Plants. Available online: https://www.eiga.eu/uploads/documents/PP033.pdf (accessed on February 2025).
- Tong, L.; Zhang, A.; Li, Y.; et al. Exergy and energy analysis of a load regulation method of CVO of air separation unit. Appl. Therm. Eng. 2015, 80, 413–423.