
Downloads
Download




This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Demystifying the Potential of Anode-Less Alkali Metal Batteries: Uncovering the Role of Liquid and Solid Electrolyte Combinations
Shruti Kannan and Ananthakumar Ramadoss *
Advanced Research School for Technology & Product Simulation (ARSTPS), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering & Technology (CIPET), T.V.K. Industrial Estate, Guindy, Chennai 600032, India
* Correspondence: ananth@cipet.gov.in or ananth.cipet@gmail.com; Tel.: +91-8895001133
Received: 14 November 2024; Revised: 1 January 2025; Accepted: 23 January 2025; Published: 11 February 2025
Abstract: Contribution to sustainable energy can be effectively routed to decarbonise power generation and transport sectors, by augmenting the need for electrochemical energy storage devices such as batteries which can endow greater energy density, longevity and safety to the portable electronic devices. Particularly, anode-less alkali metal batteries (ALAMBs) are promising owing to their cost-effectiveness, ease of manufacturing, and utilizing a host anode renders the systems with recoupable gravimetric and volumetric energy densities. However, interfacial contact resistance, limited ion pathways, and the formation of dead alkali metals contribute to reduced cation utilization during repeated cycling, diminishing the long-term performance and practical viability of the system. In response, various strategies to optimize the deposition substrate, such as the anodic current collector, interface and electrolyte have been suggested to prolong cell lifespan. However, most of these approaches are still largely empirical and lack comprehensive diagnostic tools to unravel the complex relationship between the structural changes in the cathode and the nature of alkali metal deposition. This review provides a comprehensive summary of the contemporary improvements carried out in the design and engineering of ALAMBs highlighting the moderation approaches involving both liquid and solid electrolytes to enhance the cycle life, and safety greatly. Finally, the compensatory effects with prospects into the cycling protocols to realize the true energy density of the system are also systematically outlined.
Keywords:
anode-less alkali metal batteries current collector interface liquid electrolyte solid electrolyte high energy density
References
- Zor, C.; Turrell, S.J.; Uyanik, M.S.; et al. Lithium Plating and Stripping: Toward Anode-Free Solid-State Batteries. Adv. Energy Sustain. Res. 2024, 5, 2300001. https://doi.org/10.1002/aesr.202300001.
- Zhao, C.; Xu, G.-L.; Yu, Z.; et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173. https://doi.org/10.1038/s41565-020-00797-w.
- Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; et al. Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Adv. Energy Mater. 2015, 5, 1401986. https://doi.org/10.1002/aenm.201401986.
- Chen, Y.; Ye, C.; Zhang, N.; et al. Prospects for practical anode-free sodium batteries. Mater. Today 2024, 73, 260–274. https://doi.org/10.1016/j.mattod.2024.01.002.
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. https://doi.org/10.1038/s41467-020-15355-0.
- Chen, J.; Wang, Y.; Li, S.; et al. Porous Metal Current Collectors for Alkali Metal Batteries. Adv. Sci. 2023, 10, 2205695. https://doi.org/10.1002/advs.202205695.
- Kim, S.; Park, G.; Lee, S.J.; et al. Lithium-Metal Batteries: From Fundamental Research to Industrialization. Adv. Mater. 2023, 35, 2206625. https://doi.org/10.1002/adma.202206625.
- Zhang, Y.; Zhong, Y.; Wu, Z.; et al. Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angew. Chem. Int. Ed. 2020, 59, 7797–7802. https://doi.org/10.1002/anie.202000023.
- Fang, C.; Li, J.; Zhang, M.; et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515. https://doi.org/10.1038/s41586-019-1481-z.
- Chen, K.-H.; Wood, K.N.; Kazyak, E.; et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681. https://doi.org/10.1039/C7TA00371D.
- Schmuch, R.; Wagner, R.; Hörpel, G.; et al. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. https://doi.org/10.1038/s41560-018-0107-2.
- Yim, C.-H.; Houache, M.S.E.; Baranova, E.A.; et al. Understanding key limiting factors for the development of all-solid-state-batteries. Chem. Eng. J. Adv. 2023, 13, 100436. https://doi.org/10.1016/j.ceja.2022.100436.
- Hatzell, K.B. Anode-Less or Anode-Free? ACS Energy Lett. 2023, 8, 4775–4776. https://doi.org/10.1021/acsenergylett.3c02163.
- Neudecker, B.J.; Dudney, N.J.; Bates, J.B. “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode. J. Electrochem. Soc. 2000, 147, 517. https://doi.org/10.1149/1.1393226.
- Nanda, S.; Gupta, A.; Manthiram, A. Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Adv. Energy Mater. 2021, 11, 2000804. https://doi.org/10.1002/aenm.202000804.
- Wu, W.; Luo, W.; Huang, Y. Less is more: A perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem. Soc. Rev. 2023, 52, 2553–2572. https://doi.org/10.1039/D2CS00606E.
- Yao, W.; Zou, P.; Wang, M.; et al. Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochem. Energy Rev. 2021, 4, 601–631. https://doi.org/10.1007/s41918-021-00106-6.
- Pei, A.; Zheng, G.; Shi, F.; et al. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17, 1132–1139. https://doi.org/10.1021/acs.nanolett.6b04755.
- Huo, S.; Wang, L.; Su, B.; et al. Anode-Free Li Metal Batteries: Feasibility Analysis and Practical Strategy. Adv. Mater. 2024, 36, 2411757. https://doi.org/10.1002/adma.202411757.
- Lai, T.; Zhao, H.; Song, Y.; et al. Mechanism and Control Strategies of Lithium-Ion Battery Safety: A Review. Small Methods 2024, 9, 2400029. https://doi.org/10.1002/smtd.202400029.
- Betz, J.; Bieker, G.; Meister, P.; et al. Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Adv. Energy Mater. 2019, 9, 1900761. https://doi.org/10.1002/aenm.201900761.
- Wu, B.; Chen, C.; Raijmakers, L.H.J.; et al. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Mater. 2023, 57, 508–539. https://doi.org/10.1016/j.ensm.2023.02.036.
- Heubner, C.; Maletti, S.; Auer, H.; et al. From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater. 2021, 31, 2106608. https://doi.org/10.1002/adfm.202106608.
- Tudela Ribes, A.; Beaunier, P.; Willmann, P.; et al. Correlation between cycling efficiency and surface morphology of electrodeposited lithium. Effect of fluorinated surface active additives. J. Power Sources 1996, 58, 189–195. https://doi.org/10.1016/S0378-7753(96)02397-X.
- Zhang, X.-Q.; Wang, X.-M.; Li, B.-Q.; et al. Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. J. Mater. Chem. A 2020, 8, 4283–4289. https://doi.org/10.1039/C9TA12269A.
- Cooper, E.R.; Li, M.; Gentle, I.; et al. A Deeper Understanding of Metal Nucleation and Growth in Rechargeable Metal Batteries Through Theory and Experiment. Angew. Chem. Int. Ed. 2023, 62, e202309247. https://doi.org/10.1002/anie.202309247.
- Xu, H.; Li, S.; Chen, X.; et al. Surpassing lithium metal rechargeable batteries with self-supporting Li–Sn–Sb foil anode. Nano Energy 2020, 74, 104815. https://doi.org/10.1016/j.nanoen.2020.104815.
- Lu, Y.; Zhao, C.-Z.; Zhang, R.; et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 2021, 7, eabi5520. https://doi.org/10.1126/sciadv.abi5520.
- Song, H.; He, T.; Liu, J.; et al. Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries. Carbon 2021, 181, 99–106. https://doi.org/10.1016/j.carbon.2021.05.002.
- Hong, S.-H.; Jung, D.-H.; Kim, J.-H.; et al. Electrical Conductivity Gradient Based on Heterofibrous Scaffolds for Stable Lithium-Metal Batteries. Adv. Funct. Mater. 2020, 30, 1908868. https://doi.org/10.1002/adfm.201908868.
- Shan, C.; Qin, Z.; Xie, Y.; et al. Cu-CNTs current collector fabricated by deformation-driven metallurgy for anode-free Li metal batteries. Carbon 2023, 204, 367–376. https://doi.org/10.1016/j.carbon.2022.12.074.
- Cho, S.; Kim, D.Y.; Lee, J.-I.; et al. Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries. Adv. Funct. Mater. 2022, 32, 2208629. https://doi.org/10.1002/adfm.202208629.
- Huang, S.; Lu, S.; Lv, Y.; et al. Single-atomic Zn-(C/N/O) lithiophilic sites induced stable lithium plating/stripping in anode-free lithium metal battery. Nano Res. 2023, 16, 11473–11485. https://doi.org/10.1007/s12274-023-5795-7.
- Abdollahifar, M. Nanocarbon applications in anode-free batteries. Carbon 2025, 233, 119914. https://doi.org/10.1016/j.carbon.2024.119914.
- Gu, J.; Zhang, Y.; Shi, Y.; et al. Heteroatom Immobilization Engineering toward High-Performance Metal Anodes. ACS Nano 2024, 18, 25966–25985. https://doi.org/10.1021/acsnano.4c08831.
- Ding, S.; Fang, Z.; Zhang, L.; et al. Organic nano carbon source inducing 3D silica nanoparticles-graphene nanosheet layer on Cu current collector for high-performance anode-free lithium metal batteries. J. Colloid Interface Sci. 2024, 672, 543–551. https://doi.org/10.1016/j.jcis.2024.06.043.
- Zhang, X.-L.; Ma, L.; Cai, Y.-P.; et al. A low-Fermi-level current collector enables anode-free lithium metal batteries with long cycle life. Matter 2024, 7, 583–602. https://doi.org/10.1016/j.matt.2023.11.017.
- You, X.; Feng, Y.; Ning, D.; et al. Phosphorized 3D Current Collector for High-Energy Anode-Free Lithium Metal Batteries. Nano Lett. 2024, 24, 11367–11375. https://doi.org/10.1021/acs.nanolett.4c01844.
- Zhong, G.; Ma, J.; Li, N.; et al. Ultralight, dual-conductive, all-fiber based 3D anode current collector for anode-free lithium metal battery. Carbon 2024, 228, 119424. https://doi.org/10.1016/j.carbon.2024.119424.
- Deng, J.; Li, H.; Zheng, F.; et al. A “breathable” 3D lithium host with MnO2 nanoflake array for long-lifespan anode-free lithium metal batteries. Chin. Chem. Lett. 2024, 110681. https://doi.org/10.1016/j.cclet.2024.110681.
- Li, J.; Ma, Z.; Yang, K.; et al. Laser-Generated Au nanoparticles as lithophilic sites in self-supported film host for anode-free lithium metal battery. J. Colloid Interface Sci. 2025, 678, 578–587. https://doi.org/10.1016/j.jcis.2024.09.049.
- Zhu, J.; Kang, C.; Xiao, X.; et al. Regulating local chemical softness of the collector to homogenize Li deposition for anode-free Li-metal batteries. Energy Environ. Sci. 2024, 17, 9323–9334. https://doi.org/10.1039/D4EE03673E.
- Wang, J.; Yang, P.; Wang, Y.; et al. High entropy alloy nanoparticles decorated carbon-based electrode as interfacial Li-ion localized accelerators for anode-free lithium metal batteries. Carbon 2024, 228, 119432. https://doi.org/10.1016/j.carbon.2024.119432.
- Liao, X.; Wang, X.; Yan, C.; et al. Bipolar Current Collectors of Cu/polymer/Al Composite for Anode-Free Batteries. Adv. Funct. Mater. 2024, 34, 2310925. https://doi.org/10.1002/adfm.202310925.
- Abrha, L.H.; Nikodimos, Y.; Weldeyohannes, H.H.; et al. Effects of a Thermally Electrochemically Activated β-PVDF Fiber on Suppression of Li Dendrite Growth for Anode-Free Batteries. ACS Appl. Energy Mater. 2021, 4, 3240–3248. https://doi.org/10.1021/acsaem.0c03015.
- Yang, B.; Wei, H.; Wang, H.; et al. Engineering Moderately Lithiophilic Paper-Based Current Collectors with Variable Solid Electrolyte Interface Films for Anode-Free Lithium Batteries. Nanomaterials 2024, 14, 1461. https://doi.org/10.3390/nano14171461.
- Lin, L.; Suo, L.; Hu, Y.-S.; et al. Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery. Adv. Energy Mater. 2021, 11, 2003709. https://doi.org/10.1002/aenm.202003709.
- Tamwattana, O.; Park, H.; Kim, J.; et al. High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Lett. 2021, 6, 4416–4425. https://doi.org/10.1021/acsenergylett.1c02224.
- Weldeyohannes, H.H.; Abrha, L.H.; Nikodimos, Y.; et al. Guiding lithium-ion flux to avoid cell’s short circuit and extend cycle life for an anode-free lithium metal battery. J. Power Sources 2021, 506, 230204. https://doi.org/10.1016/j.jpowsour.2021.230204.
- Liang, P.; Sun, H.; Huang, C.-L.; et al. A Nonflammable High-Voltage 4.7 V Anode-Free Lithium Battery. Adv. Mater. 2022, 34, 2207361. https://doi.org/10.1002/adma.202207361.
- Nan, W.; Li, B.; Yan, S.; et al. Dynamic interface layer enables epitaxial Li deposition for anode-free Li metal batteries. J. Phys. Chem. Solids 2025, 196, 112350. https://doi.org/10.1016/j.jpcs.2024.112350.
- Zhang, W.; Zhang, F.; Ming, F.; et al. Sodium-ion battery anodes: Status and future trends. EnergyChem 2019, 1, 100012. https://doi.org/10.1016/j.enchem.2019.100012.
- Kim, D.-Y.; Kim, D.-H.; Kim, S.-H.; et al. Nano Hard Carbon Anodes for Sodium-Ion Batteries. Nanomaterials 2019, 9, 793. https://doi.org/10.3390/nano9050793.
- Zhao, Y.; Liu, B.; Yi, Y.; et al. An Anode-Free Potassium-Metal Battery Enabled by a Directly Grown Graphene-Modulated Aluminum Current Collector. Adv. Mater. 2022, 34, 2202902. https://doi.org/10.1002/adma.202202902.
- Cui, Z.; Song, J.; Chen, M.; et al. Non-completely selenized Cu-OSe nanowires as potassium-philic host for anode-free potassium metal batteries. Energy Storage Mater. 2024, 71, 103649. https://doi.org/10.1016/j.ensm.2024.103649.
- Ren, N.; Wang, L.; Li, X.; et al. Design Principles of Mediation Layer for Current Collectors Toward High-Performance Anode-Free Potassium-Metal Batteries: A Case Study of Cu6Sn5 on Copper. Adv. Funct. Mater. 2024, 34, 2313538. https://doi.org/10.1002/adfm.202313538.
- Wu, H.; Xie, C.; Zhang, M.; et al. Retarded sodium alloying interface reaction for stable anode-less sodium metal batteries. Chem. Commun. 2024, 60, 8264–8267. https://doi.org/10.1039/D4CC02545H.
- Guo, W.; Liu, X.; Mu, Y.; et al. Outside-in directional sodium deposition through self-supporting gradient fluorinated magnesium alloy framework toward high-rate anode-free Na batteries. Energy Storage Mater. 2024, 73, 103840. https://doi.org/10.1016/j.ensm.2024.103840.
- Bai, Y.; Zheng, X.; Liu, H.; et al. Honeycomb-like superstructure of 3D sodiophilic host for anode-free sodium batteries. Energy Storage Mater. 2025, 74, 103926. https://doi.org/10.1016/j.ensm.2024.103926.
- Li, H.; Zhang, H.; Wu, F.; et al. Sodiophilic Current Collectors Based on MOF-Derived Nanocomposites for Anode-Less Na-Metal Batteries. Adv. Energy Mater. 2022, 12, 2202293. https://doi.org/10.1002/aenm.202202293.
- Cai, Z.; Tang, F.; Yang, Y.; et al. A multifunctional super‐sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 2023, 116, 108814. https://doi.org/10.1016/j.nanoen.2023.108814.
- Xu, K.; Zheng, X.; Luo, R.; et al. A three-dimensional zincophilic nano-copper host enables dendrite-free and anode-free Zn batteries. Mater. Today Energy 2023, 34, 101284. https://doi.org/10.1016/j.mtener.2023.101284.
- Pan, Y.; Liu, Z.; Liu, S.; et al. Quasi-Decoupled Solid–Liquid Hybrid Electrolyte for Highly Reversible Interfacial Reaction in Aqueous Zinc–Manganese Battery. Adv. Energy Mater. 2023, 13, 2203766. https://doi.org/10.1002/aenm.202203766.
- Yan, C.; Xu, R.; Xiao, Y.; et al. Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Adv. Funct. Mater. 2020, 30, 1909887. https://doi.org/10.1002/adfm.201909887.
- Qiao, Y.; Yang, H.; Chang, Z.; et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662. https://doi.org/10.1038/s41560-021-00839-0.
- Liu, W.; Luo, Y.; Hu, Y.; et al. Interrelation Between External Pressure, SEI Structure, and Electrodeposit Morphology in an Anode-Free Lithium Metal Battery. Adv. Energy Mater. 2024, 14, 2302261. https://doi.org/10.1002/aenm.202302261.
- Sun, J.; Zhang, S.; Li, J.; et al. Robust Transport: An Artificial Solid Electrolyte Interphase Design for Anode-Free Lithium-Metal Batteries. Adv. Mater. 2023, 35, 2209404. https://doi.org/10.1002/adma.202209404.
- Zhang, Z.; Luo, H.; Liu, Z.; et al. A chemical lithiation induced Li4.4Sn lithiophilic layer for anode-free lithium metal batteries. J. Mater. Chem. A 2022, 10, 9670–9679. https://doi.org/10.1039/D2TA00167E.
- Wang, X.; He, Y.; Tu, S.; Fu, L.; et al. Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Mater. 2022, 49, 135–143.
- Ma, C.; Weng, S.; Zhang, Y.; et al. Chemically Induced Activity Recovery of Isolated Lithium in Anode-free Lithium Metal Batteries. Nano Lett. 2022, 22, 9268–9274. https://doi.org/10.1021/acs.nanolett.2c02508.
- Liu, X.; Liu, J.; Zhao, H.; et al. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. J. Colloid Interface Sci. 2025, 679, 1106–1116. https://doi.org/10.1016/j.jcis.2024.10.023.
- Ouyang, Z.; Wang, Y.; Wang, S.; et al. Programmable DNA Interphase Layers for High-Performance Anode-Free Lithium Metal Batteries. Adv. Mater. 2024, 36, 2401114. https://doi.org/10.1002/adma.202401114.
- Yu, K.; Chen, J.; xie, X.; et al. Constructing LiF-rich artificial SEI at a two-dimensional copper net current collector in anode-free lithium metal batteries. Surf. Interfaces 2022, 34, 102326. https://doi.org/10.1016/j.surfin.2022.102326.
- Abrha, L.H.; Zegeye, T.A.; Hagos, T.T.; et al. Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochim. Acta 2019, 325, 134825. https://doi.org/10.1016/j.electacta.2019.134825.
- Wang, C.; Zheng, Y.; Chen, Z.-N.; et al. Robust Anode-Free Sodium Metal Batteries Enabled by Artificial Sodium Formate Interface. Adv. Energy Mater. 2023, 13, 2204125. https://doi.org/10.1002/aenm.202204125.
- Jiao, W.; Alaei, S.; Ramamurthy, J.; et al. Highly stable anode-free sodium batteries enabled by mechanically deformable nucleation interface. Energy Storage Mater. 2024, 73, 103784. https://doi.org/10.1016/j.ensm.2024.103784.
- Dahunsi, O.J.; Li, B.; An, B.; et al. Directing High-Efficiency Na Plating with Carbon–Aluminum Junction Interfaces for Anode-Free Na Metal Batteries. Energy Fuels 2023, 37, 7522–7529. https://doi.org/10.1021/acs.energyfuels.3c00891.
- Ma, P.; Zhang, Y.; Li, W.; et al. Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries. Sci. China Mater. 2024, 67, 3648–3657. https://doi.org/10.1007/s40843-024-3084-4.
- Wang, C.; Chen, B.; Wang, T.; et al. Sustainable interface regulation enabled by a bismuth solid-state surfactant effect for Zn-free anodes. Energy Environ. Sci. 2024, 17, 5429–5439. https://doi.org/10.1039/D4EE01644K.
- Ge, J.; Ma, C.; Zhang, Y.; et al. Edge Electron Effect Induced High-Entropy SEI for Durable Anode-Free Sodium Batteries. Adv. Mater. 2024, 2413253. https://doi.org/10.1002/adma.202413253.
- Liu, L.; Cai, Z.; Yang, S.; et al. Multifunctional High-Entropy Alloy Nanolayer Toward Long-Life Anode-Free Sodium Metal Battery. Adv. Mater. 2024, 37, 2413331. https://doi.org/10.1002/adma.202413331.
- Zhang, Y.; Liu, J.; Li, Y.; et al. Reactivating the Dead Lithium by Redox Shuttle to Promote the Efficient Utilization of Lithium for Anode Free Lithium Metal Batteries. Adv. Funct. Mater. 2023, 33, 2301332. https://doi.org/10.1002/adfm.202301332.
- Lee, J.; Kim, J.; Lee, D.G.; et al. Constructing stable solid electrolyte interphases to enhance the calendar life of anode-free lithium metal batteries. Chem. Eng. J. 2024, 499, 156296.
- Nguyen, M.H.; Kim, D.; Kim, B.-K.; et al. Harnessing Liquid Metals with In Situ Polymerized Electrolyte for Anode-Free Lithium Metal Batteries. Adv. Funct. Mater. 2024, 34, 2407179. https://doi.org/10.1002/adfm.202407179.
- Louli, A.J.; Eldesoky, A.; Weber, R.; et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 2020, 5, 693–702. https://doi.org/10.1038/s41560-020-0668-8.
- Beyene, T.T.; Su, W.-N.; Hwang, B.J. Dilute dual-salt electrolyte for successful passivation of in-situ deposited Li anode and permit effective cycling of high voltage anode free batteries. J. Power Sources 2022, 542, 231752. https://doi.org/10.1016/j.jpowsour.2022.231752.
- Jote, B.A.; Beyene, T.T.; Sahalie, N.A.; et al. Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. J. Power Sources 2020, 461, 228102. https://doi.org/10.1016/j.jpowsour.2020.228102.
- Anansuksawat, N.; Sangsanit, T.; Prempluem, S.; et al. Preconcentration of lithium salt in nanoporous alumina on Cu foil as a concentrated lithium semi-solid layer for anode-free Li-metal batteries. Chem. Commun. 2024, 60, 14380–14383. https://doi.org/10.1039/d4cc03946g.
- Jiang, R.; Zhu, Z.; Qi, X.; et al. N, S-Rich SEI Derived From Continuously-Releasing Additive for Anode-Free Lithium-Metal Batteries in Commercial Carbonate Electrolyte. Small 2024, 2410486. https://doi.org/10.1002/smll.202410486.
- Qin, K.; Sasaki, T.; Ge, S.; et al. Enhanced salt content and stabilized bilayer passivation interphase toward long-life and high-safety anode-free lithium battery. Mater. Today Energy 2025, 47, 101751. https://doi.org/10.1016/j.mtener.2024.101751.
- Wang, Y.; Noguchi, H. Revealing the enhancement of Li plating/stripping efficiency in TEGDME-based low-concentration electrolytes for anode-free lithium metal batteries. Phys. Chem. Chem. Phys. 2024, 26, 25352–25362. https://doi.org/10.1039/D4CP02755H.
- Lu, C.; Zhao, F.; Tao, B.; et al. Anode-Free Aqueous Aluminum Ion Batteries. Small 2024, 20, 2402025. https://doi.org/10.1002/smll.202402025.
- Shi, W.; Song, Z.; Zhang, W.; et al. Identifying iodide-ion regulation of early-stage zinc nucleation and growth for high-rate anode-free zinc metal batteries. Energy Environ. Sci. 2024, 17, 7372–7381. https://doi.org/10.1039/D4EE02784A.
- Su, L.; Charalambous, H.; Cui, Z.; et al. High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy Environ. Sci. 2022, 15, 843–854. https://doi.org/10.1039/D1EE03103A.
- Lin, Y.; Chen, J.; Zhang, H.; et al. In-situ construction of high-mechanical-strength and fast-ion-conductivity interphase for anode-free Li battery. J. Energy Chem. 2023, 80, 207–214. https://doi.org/10.1016/j.jechem.2023.02.005.
- Tang, M.; Dong, S.; Wang, J.; et al. Low-temperature anode-free potassium metal batteries. Nat. Commun. 2023, 14, 6006. https://doi.org/10.1038/s41467-023-41778-6.
- Yen, Y.-J.; Manthiram, A. Anode-Free Lithium–Sulfur Batteries with a Rare-Earth Triflate as a Dual-Function Electrolyte Additive. ACS Appl. Mater. Interfaces 2024, 16, 34997–35005. https://doi.org/10.1021/acsami.4c05414.
- Panchal, R.A.; Datta, J.; Varude, V.; et al. Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery. Nano Energy 2024, 129, 110010. https://doi.org/10.1016/j.nanoen.2024.110010.
- Ji, H.; Xie, C.; Zhang, R.; et al. Sodiophilic Interface and Electrolyte Regulation Boost the Lifespan of Anode-Free Sodium Battery. SusMat 2024, e258. https://doi.org/10.1002/sus2.258.
- Zou, Y.; Zhang, B.; Luo, H.; et al. Electrolyte Solvation Engineering Stabilizing Anode-Free Sodium Metal Battery With 4.0 V-Class Layered Oxide Cathode. Adv. Mater. 2024, 36, 2410261. https://doi.org/10.1002/adma.202410261.
- Wang, Y.; Liu, Y.; Nguyen, M.; et al. Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. Adv. Mater. 2023, 35, 2206762. https://doi.org/10.1002/adma.202206762.
- Gu, D.; Kim, H.; Lee, J.-H.; et al. Surface-roughened current collectors for anode-free all-solid-state batteries. J. Energy Chem. 2022, 70, 248–257. https://doi.org/10.1016/j.jechem.2022.02.034.
- Ockel, M.; Borchers, A.; Fröhlich, J.; et al. Atmospheric Plasma Spraying for Copper Coating of Ceramic Solid Electrolytes for Anode-Free Solid-State Batteries with Increased Interfacial Contact. In Proceedings of the 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), Bamberg, Germany, 5–6 June 2024; pp. 1–5.
- Lee, J.H.; Oh, S.-H.; Yim, H.; et al. Interfacial stabilization strategy via In-doped Ag metal coating enables a high cycle life of anode-free solid-state Li batteries. Energy Storage Mater. 2024, 69, 103398. https://doi.org/10.1016/j.ensm.2024.103398.
- Garcia-Calvo, O.; Gutiérrez-Pardo, A.; Combarro, I.; et al. Selection and Surface Modifications of Current Collectors for Anode-Free Polymer-Based Solid-State Batteries. Front. Chem. 2022, 10, 934365. https://doi.org/10.3389/fchem.2022.934365.
- Kim, J.; Lee, S.; Kim, J.; et al. Regulating Li electrodeposition by constructing Cu–Sn nanotube thin layer for reliable and robust anode-free all-solid-state batteries. Carbon Energy 2024, 6, e610. https://doi.org/10.1002/cey2.610.
- Zhang, Y.; Hu, X.; Peng, X.; et al. Electrochemical sintering of lithium metal constrained by buffer layer in anode-free all-solid-state batteries. Energy Storage Mater. 2024, 72, 103762. https://doi.org/10.1016/j.ensm.2024.103762.
- Fuchs, T.; Becker, J.; Haslam, C.G.; et al. Current-Dependent Lithium Metal Growth Modes in “Anode-Free” Solid-State Batteries at the Cu|LLZO Interface. Adv. Energy Mater. 2023, 13, 2203174. https://doi.org/10.1002/aenm.202203174.
- Liu, Y.; Meng, X.; Shi, Y.; et al. Long-Life Quasi-Solid-State Anode-Free Batteries Enabled by Li Compensation Coupled Interface Engineering. Adv. Mater. 2023, 35, 2305386. https://doi.org/10.1002/adma.202305386.
- Wen, J.; Wang, T.; Wang, C.; et al. A Tailored Interface Design for Anode-Free Solid-State Batteries. Adv. Mater. 2024, 36, 2307732. https://doi.org/10.1002/adma.202307732.
- Oh, J.; Choi, S.H.; Kim, H.; et al. Lithio-amphiphilic nanobilayer for high energy density anode-less all-solid-state batteries operating under low stack pressure. Energy Environ. Sci. 2024, 17, 7932–7943. https://doi.org/10.1039/D4EE03130J.
- Cao, D.; Ji, T.; Wei, Z.; et al. Enhancing Lithium Stripping Efficiency in Anode-Free Solid-State Batteries through Self-Regulated Internal Pressure. Nano Lett. 2023, 23, 9392–9398. https://doi.org/10.1021/acs.nanolett.3c02713.
- Kim, K.H.; Lee, M.-J.; Ryu, M.; et al. Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries. Nat. Commun. 2024, 15, 3586. https://doi.org/10.1038/s41467-024-48021-w.
- Ma, S.; Zhao, J.; Xiao, H.; et al. Modulating the Inner Helmholtz Plane towards Stable Solid Electrolyte Interphase by Anion-π Interactions for High-Performance Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Ed. 2024, 137, e202412955. https://doi.org/10.1002/anie.202412955.
- Becker, J.; Fuchs, T.; Ortmann, T.; et al. Microstructure of Lithium Metal Electrodeposited at the Steel|Li6PS5Cl Interface in “Anode-Free” Solid-State Batteries. Adv. Energy Mater. 2024, 2404975. https://doi.org/10.1002/aenm.202404975.
- Li, R.; Jiang, D.; Du, P.; et al. Negating Na‖Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries. Chem. Sci. 2022, 13, 14132–14140. https://doi.org/10.1039/D2SC05120F.
- Hu, A.; Chen, W.; Li, F.; et al. Nonflammable Polyfluorides-Anchored Quasi-Solid Electrolytes for Ultra-Safe Anode-Free Lithium Pouch Cells without Thermal Runaway. Adv. Mater. 2023, 35, 2304762. https://doi.org/10.1002/adma.202304762.
- Gu, D.; Kim, H.; Kim, B.-K.; et al. Chlorine-rich lithium argyrodite enables stable interfacial Li plating/stripping behavior in anode-free all-solid-state batteries. CrystEngComm 2023, 25, 4182–4188. https://doi.org/10.1039/D3CE00560G.
- Liu, Y.; Meng, X.; Wang, Z.; et al. Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries. Nat. Commun. 2022, 13, 4415. https://doi.org/10.1038/s41467-022-32031-7.
- Yin, Q.; Li, T.; Zhang, H.; et al. SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries. J. Energy Chem. 2024, 96, 145–152. https://doi.org/10.1016/j.jechem.2024.04.033.
- Lu, Z.; Yang, H.; Wu, G.; et al. A “Liquid-In-Solid” Electrolyte for High-Voltage Anode-Free Rechargeable Sodium Batteries. Adv. Mater. 2024, 36, 2404569. https://doi.org/10.1002/adma.202404569.
- Han, X.; Han, J.; Ma, K.; et al. A fluoride gradient, Zn-salt-rich hydrophobic interphase formed by a zincophilic, hydrophobic, anion-philic polymer “skin” for an anode-free solid Zn battery. Energy Environ. Sci. 2024, 17, 9244–9254. https://doi.org/10.1039/D4EE01978D.
- Genovese, M.; Louli, A.J.; Weber, R.; et al. Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. J. Electrochem. Soc. 2018, 165, A3321. https://doi.org/10.1149/2.0641814jes.
- Louli, A.J.; Coon, M.; Genovese, M.; et al. Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. J. Electrochem. Soc. 2021, 168, 020515. https://doi.org/10.1149/1945-7111/abe089.
- Louli, A.J.; Genovese, M.; Weber, R.; et al. Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. J. Electrochem. Soc. 2019, 166, A1291. https://doi.org/10.1149/2.0091908jes.
- Zhou, C.; Samson, A.J.; Garakani, M.A.; et al. Communication—Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin Cell Performance. J. Electrochem. Soc. 2021, 168, 060532. https://doi.org/10.1149/1945-7111/ac0998.
- Genovese, M.; Louli, A.J.; Weber, R.; et al. Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. J. Electrochem. Soc. 2019, 166, A3342. https://doi.org/10.1149/2.0661914jes.
- Gu, J.; Shi, Y.; Du, Z.; et al. Stress Relief in Metal Anodes: Mechanisms and Applications. Adv. Energy Mater. 2023, 13, 2302091. https://doi.org/10.1002/aenm.202302091.
- Zhu, X.; Cheng, H.; Lyu, S.; et al. High-Energy-Heavy-Ion Engineering Low-Tortuosity and High-Porosity 3D Metallic Electrodes for Long-Life Lithium Anodes. Adv. Energy Mater. 2023, 13, 2300129. https://doi.org/10.1002/aenm.202300129.
- Bazak, J.D.; Mueller, K.T.; Murugesan, V. Battery detectives: Uncovering cathode impact on anode-free Li cell performance by operando NMR. Chem 2024, 10, 2935–2937. https://doi.org/10.1016/j.chempr.2024.09.009.
- Kwon, Y.; Svirinovsky-Arbeli, A.; Hestenes, J.C.; et al. Elucidating the role of cathode identity: Voltage-dependent reversibility of anode-free batteries. Chem 2024, 10, 3159–3183. https://doi.org/10.1016/j.chempr.2024.06.008.
- Zhao, J.; Tang, M.; Lan, H.; et al. An anode-free sodium dual-ion battery. Energy Storage Mater. 2024, 70, 103480. https://doi.org/10.1016/j.ensm.2024.103480.
- Wang, D.Y.; Sinha, N.N.; Petibon, R.; et al. A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J. Power Sources 2014, 251, 311–318. https://doi.org/10.1016/j.jpowsour.2013.11.064.
- Lin, L.; Wang, J.; Li, R.; et al. Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes. Energy Storage Mater. 2020, 26, 112–118. https://doi.org/10.1016/j.ensm.2019.12.039.
- Liu, L.; Yin, Y.-X.; Li, J.-Y.; et al. Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. Adv. Mater. 2018, 30, 1706216. https://doi.org/10.1002/adma.201706216.
- Qin, N.; Sun, Y.; Hu, C.; et al. Boosting high initial coulombic efficiency of hard carbon by in-situ electrochemical presodiation. J. Energy Chem. 2023, 77, 310–316. https://doi.org/10.1016/j.jechem.2022.10.032.
- Chen, L.; Chiang, C.-L.; Wu, X.; et al. Prolonged lifespan of initial-anode-free lithium-metal battery by pre-lithiation in Li-rich Li2Ni0.5Mn1.5O4 spinel cathode. Chem. Sci. 2023, 14, 2183–2191. https://doi.org/10.1039/D2SC06772B.
- Lin, L.; Qin, K.; Zhang, Q.; et al. Li-Rich Li2[Ni0.8Co0.1Mn0.1]O2 for Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Ed. 2021, 60, 8289–8296. https://doi.org/10.1002/anie.202017063.
- Lin, L.; Qin, K.; Li, M.; et al. Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Mater. 2022, 45, 821–827. https://doi.org/10.1016/j.ensm.2021.12.036.
- Xu, T.; Qin, K.; Tian, C.; et al. Searching for the ideal Li1+xTMO2 cathode for anode-free Li metal batteries. Energy Storage Mater. 2025, 74, 103956. https://doi.org/10.1016/j.ensm.2024.103956.
- Tian, C.; Qin, K.; Xu, T.; et al. Hybrid Li-rich cathodes for anode-free lithium metal batteries. Next Nanotechnol. 2025, 7, 100114. https://doi.org/10.1016/j.nxnano.2024.100114.
- Wu, J.; Lin, C.; Liang, Q.; et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 2022, 4, e12288. https://doi.org/10.1002/inf2.12288.
- Golozar, M.; Hovington, P.; Paolella, A.; et al. In Situ Scanning Electron Microscopy Detection of Carbide Nature of Dendrites in Li–Polymer Batteries. Nano Lett. 2018, 18, 7583–7589. https://doi.org/10.1021/acs.nanolett.8b03148.
- Liang, X.; Pang, Q.; Kochetkov, I.R.; et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119. https://doi.org/10.1038/nenergy.2017.119.
- Liu, S.; Ji, X.; Piao, N.; et al. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. Angew. Chem. Int. Ed. 2021, 60, 3661–3671. https://doi.org/10.1002/anie.202012005.
- Liang, W.; Lian, F.; Meng, N.; et al. Adaptive formed dual-phase interface for highly durable lithium metal anode in lithium–air batteries. Energy Storage Mater. 2020, 28, 350–356. https://doi.org/10.1016/j.ensm.2020.03.022.
- Zhang, W.; Sayavong, P.; Xiao, X.; et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 2024, 626, 306–312. https://doi.org/10.1038/s41586-023-06992-8.