Downloads

Hancock, J. T. The Effects of Molecular Hydrogen on Plant Physiology and Metabolism: An Overview. Journal of Plant Physiology and Metabolism. 2024. doi: Retrieved from https://www.sciltp.com/journals/jppm/article/view/541

Review

The Effects of Molecular Hydrogen on Plant Physiology and Metabolism: An Overview

John T. Hancock

School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; john.hancock@uwe.ac.uk;
Tel.: +44-(0)1173282475

Received: 8 October 2024; Revised: 15 November 2024; Accepted: 27 November 2024; Published: 28 November 2024

Abstract: Gaseous hydrogen (H2) has emerged as a molecule that has a significant influence on the growth and development of plants, particularly if they are under stress. Often research has shown the ameliorating effects of H2 during drought, in the presence of heavy metals or salt, or during UV light irradiation. Postharvest, H2 has been shown to increase the quality of fruits and vegetables during storage, and slows the senescence of flowers. In molecular terms, H2 has been shown to scavenge hydroxyl radicals and remove peroxynitrite, but not react with other reactive signalling molecules such as nitric oxide. However, not all the molecular actions of H2 have yet been unravelled. This is not a totally comprehensive review of the topic, but hopefully gives an overview of the influence of H2 on some of the molecular events in cells and how this can influence plant physiology. There is no doubt that H2 has significant effects in plants, and there is potential scope for its wide adoption throughout the agricultural sector.

Keywords:

antioxidants flowers fruits hydrogen gas hydrogen-rich water molecular hydrogen molecular mechanisms postharvest

References

  1. Hancock, J.T.; LeBaron, T.W. The early history of hydrogen and other gases in respiration and biological systems: Revisiting Beddoes, Cavallo, and Davy. Oxygen 2023, 3, 102–119.
  2. LeBaron, T.W.; Ohno, K.; Hancock, J.T. The on/off history of hydrogen in medicine: will the interest persist this time around? Oxygen 2023, 3, 143–162.
  3. Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694.
  4. NCBI. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 23 September 2024)
  5. Iketani, M.; Ohsawa, I. Molecular hydrogen as a neuroprotective agent. Curr. Neuropharmacol. 2017, 15, 324–331.
  6. Zheng, M.; Yu, H.; Xue, Y.; Yang, T.; Tu, Q.; Xiong, K.; Deng, D.; Lu, L.; Huang, N. The protective effect of hydrogen-rich water on rats with type 2 diabetes mellitus. Mol. Cell. Biochem. 2021, 476, 3089–3097.
  7. Li, X.; Li, L.; Liu, X.; Wu, J.; Sun, X.; Li, Z.; Geng, Y.J.; Liu, F.; Zhou, Y. Attenuation of cardiac ischaemia-reperfusion injury by treatment with hydrogen-rich water. Curr. Mol. Med. 2019, 19, 294–302.
  8. Dhillon, G.; Buddhavarapu, V.; Grewal, H.; Sharma, P.; Verma, R.K.; Munjal, R.; Devadoss, R.; Kashyap, R. Hydrogen water: Extra healthy or a hoax? A systematic review. Int. J. Mol. Sci. 2024, 25, 973.
  9. Zulfiqar, F.; Russell, G.; Hancock, J.T. Molecular hydrogen in agriculture. Planta 2021, 254, 56.
  10. Alwazeer, D.; Çiğdem, A. Use of the molecular hydrogen in agriculture field. Turk. J. Agric. -Food Sci. Technol. 2022, 10, 14–20.
  11. Li, L.; Lou, W.; Kong, L.; Shen, W. Hydrogen commonly applicable from medicine to agriculture: From molecular mechanisms to the field. Curr. Pharm. Des. 2021, 27, 747–759.
  12. Crowl, D.A.; Jo, Y.D. The hazards and risks of hydrogen. J. Loss Prev. Process Ind. 2007, 20, 158–164.
  13. Sánchez, A.L.; Williams, F.A. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 2014, 41, 1–55.
  14. Bjurstedt, H.; Severin, G. The prevention of decompression sickness and nitrogen narcosis by the use of hydrogen as a substitute for nitrogen, the Arne Zetterstrom method for deep-sea diving. Mil. Surg. 1948, 103, 107–116.
  15. Russell, G.; Zulfiqar, F.; Hancock, J.T. Hydrogenases and the role of molecular hydrogen in plants. Plants 2020, 9, 1136.
  16. Russell, G.; Nenov, A.; Kisher, H.; Hancock, J.T. Molecular hydrogen as medicine: An assessment of administration methods. Hydrogen 2021, 2, 444–460.
  17. Russell, G.; May, J.; Hancock, J.T. An interplay of gases: Oxygen and hydrogen in biological systems. Oxygen 2024, 4, 37–52.
  18. Ostojic, S.M. Molecular hydrogen in sports medicine: new therapeutic perspectives. Int. J. Sports Med. 2015, 36, 273–279.
  19. Drid, P.; Trivic, T.; Casals, C.; Trivic, S.; Stojanovic, M.; Ostojic, S.M. Is molecular hydrogen beneficial to enhance post-exercise recovery in female athletes? Sci. Sports 2016, 31, 207–213.
  20. Chen, Q.; Zhao, X.; Lei, D.; Hu, S.; Shen, Z.; Shen, W.; Xu, X. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves. Plant Growth Regul. 2017, 83, 69–82.
  21. Chaki, M.; Begara-Morales, J.C.; Barroso, J.B. Oxidative stress in plants. Antioxidants 2020, 9, 481.
  22. Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free. Radic. Biol. Med. 2001, 30, 1191–1212.
  23. Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites 2021, 11, 641.
  24. Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341.
  25. Allagulova, C.R.; Lubyanova, A.R.; Avalbaev, A.M. Multiple ways of nitric oxide production in plants and its functional activity under abiotic stress conditions. Int. J. Mol. Sci. 2023, 24, 11637.
  26. Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Yun, B.W. Nitric oxide acts as a key signaling molecule in plant development under stressful conditions. Int. J. Mol. Sci. 2023, 24, 4782.
  27. Veal, E.A.; Kritsiligkou, P. How are hydrogen peroxide messages relayed to affect cell signalling? Curr. Opin. Chem. Biol. 2024, 81, 102496.
  28. Hu, H.; Li, P.; Wang, Y.; Gu, R. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014, 156, 100–109.
  29. Liu, S.; Zha, Z.; Chen, S.; Tang, R.; Zhao, Y.; Lin, Q.; Duan, Y.; Wang, K. Hydrogen-rich water alleviates chilling injury-induced lignification of kiwifruit by inhibiting peroxidase activity and improving antioxidant system. J. Sci. Food Agric. 2023, 103, 2675–2680.
  30. Wu, Q.; Su, N.; Cai, J.; Shen, Z.; Cui, J. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J. Plant Physiol. 2015, 175, 174–182.
  31. Zhao, X.; Chen, Q.; Wang, Y.; Shen, Z.; Shen, W.; Xu, X. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis. Ecotoxicol. Environ. Saf. 2017, 144, 369–379.
  32. Xie, Y.; Zhang, W.; Duan, X.; Dai, C.; Zhang, Y.; Cui, W.; Wang, R.; Shen, W. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso) flavonoids and antioxidant defence in Medicago sativa. Funct. Plant Biol. 2015, 42, 1141–1157.
  33. Chen, H.; Zhang, J.; Hao, H.; Feng, Z.; Chen, M.; Wang, H.; Ye, M. Hydrogen-rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. Amb Express 2017, 7, 1–10.
  34. Kawamura, T.; Wakabayashi, N.; Shigemura, N.; Huang, C.S.; Masutani, K.; Tanaka, Y.; Noda, K.; Peng, X.; Takahashi, T.; Billiar, T.R.; Okumura, M. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo. Am. J. Physiol. -Lung Cell. Mol. Physiol. 2013, 304, L646–L656.
  35. Chen, H.G.; Xie, K.L.; Han, H.Z.; Wang, W.N.; Liu, D.Q.; Wang, G.L.; Yu, Y.H. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int. J. Surg. 2013, 11, 1060–1066.
  36. Jin, Q.; Zhu, K.; Cui, W.; Xie, Y.; Han, B.I.N.; Shen, W. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 2013, 36, 956–969.
  37. Lin, Y.; Zhang, W.; Qi, F.; Cui, W.; Xie, Y.; Shen, W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J. Plant Physiol. 2014, 171, 1–8.
  38. Jin, Q.; Cui, W.; Dai, C.; Zhu, K.; Zhang, J.; Wang, R.; La, H.; Li, X.; Shen, W. Involvement of hydrogen peroxide and heme oxygenase-1 in hydrogen gas-induced osmotic stress tolerance in alfalfa. Plant Growth Regul. 2016, 80, 215–223.
  39. Cui, W.; Qi, F.; Zhang, Y.; Cao, H.; Zhang, J.; Wang, R.; Shen, W. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways. Plant Cell Rep. 2015, 34, 435–445.
  40. Stucki, D.; Stahl, W. Carbon monoxide–beyond toxicity? Toxicol. Lett. 2020, 333, 251–260.
  41. Naik, R.M.; Dhage, A.R.; Munjal, S.V.; Singh, P.; Desai, B.B.; Mehta, S.L.; Naik, M.S. Differential carbon monoxide sensitivity of cytochrome c oxidase in the leaves of C3 and C4 plants. Plant Physiol. 1992, 98, 984–987.
  42. Vanlerberghe, G.C. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 2013, 14, 6805–6847.
  43. Wu, F.; Chi, Y.; Jiang, Z.; Xu, Y.; Xie, L.; Huang, F.; Wan, D.I.; Ni, J.; Yuan, F.; Wu, X.; et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 2020, 578, 577–581.
  44. Desikan, R.; Neill, S.J.; Hancock, J.T. Hydrogen peroxide–induced gene expression in Arabidopsis thaliana. Free. Radic. Biol. Med. 2000, 28, 773–778.
  45. Desikan, R.; A.-H.-Mackerness, S.; Hancock, J.T.; Neill, S.J. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 2001, 127, 159–172.
  46. Vandenabeele, S.; Van Der Kelen, K.; Dat, J.; Gadjev, I.; Boonefaes, T.; Morsa, S.; Rottiers, P.; Slooten, L.; Van Montagu, M.; Zabeau, M.; Inzé, D. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc. Natl. Acad. Sci. USA 2003, 100, 16113–16118.
  47. Ohta, S. Molecular hydrogen may activate the transcription factor Nrf2 to alleviate oxidative stress through the hydrogen-targeted porphyrin. Aging Pathobiol. Ther. 2023, 25–32.
  48. Cheng, D.; Long, J.; Zhao, L.; Liu, J. Hydrogen: A rising star in gas medicine as a mitochondria-targeting nutrient via activating Keap1-Nrf2 antioxidant system. Antioxidants 2023, 12, 2062.
  49. Jin, Z.; Zhao, P.; Gong, W.; Ding, W.; He, Q. Fe-porphyrin: A redox-related biosensor of hydrogen molecule. Nano Res. 2023, 16, 2020–2025.
  50. Ri, Y.K.; Kim, S.A.; Kye, Y.H.; Jong, Y.C.; Kang, M.S.; Yu, C.J. First-principles study of molecular hydrogen binding to heme in competition with O2, NO and CO. RSC Adv. 2024, 14, 16629–16638.
  51. Iuchi, K.; Imoto, A.; Kamimura, N.; Nishimaki, K.; Ichimiya, H.; Yokota, T.; Ohta, S. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci. Rep. 2016, 6, 18971.
  52. Lindermayr, C.; Saalbach, G.; Durner, J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005, 137, 921–930.
  53. Hancock, J.T.; Henson, D.; Nyirenda, M.; Desikan, R.; Harrison, J.; Lewis, M.; Hughes, J.; Neill, S.J. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol. Biochem. 2005, 43, 828–835.
  54. Liu, W.Z.; Kong, D.D.; Gu, X.X.; Gao, H.B.; Wang, J.Z.; Xia, M.; Gao, Q.; Tian, L.L.; Xu, Z.H.; Bao, F.; et al. Cytokinins can act as suppressors of nitric oxide in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 1548–1553.
  55. Spear, N.; Estévez, A.G.; Radi, R.; Beckman, J.S. Peroxynitrite and cell signaling. In Oxidative Stress and Signal Transduction; Springer US: Boston, MA, USA, 1997; pp. 32–51.
  56. Liaudet, L.; Vassalli, G.; Pacher, P. Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front. Biosci. A J. Virtual Libr. 2009, 14, 4809.
  57. Hanaoka, T.; Kamimura, N.; Yokota, T.; Takai, S.; Ohta, S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med. Gas Res. 2011, 1, 1–9.
  58. Yokota, T.; Kamimura, N.; Igarashi, T.; Takahashi, H.; Ohta, S.; Oharazawa, H. Protective effect of molecular hydrogen against oxidative stress caused by peroxynitrite derived from nitric oxide in rat retina. Clin. Exp. Ophthalmol. 2015, 43, 568–577.
  59. Itoh, T.; Hamada, N.; Terazawa, R.; Ito, M.; Ohno, K.; Ichihara, M.; Nozawa, Y.; Ito, M. Molecular hydrogen inhibits lipopolysaccharide/interferon γ-induced nitric oxide production through modulation of signal transduction in macrophages. Biochem. Biophys. Res. Commun. 2011, 411, 143–149.
  60. Zhu, Y.; Liao, W.; Wang, M.; Niu, L.; Xu, Q.; Jin, X. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J. Plant Physiol. 2016, 195, 50–58.
  61. Chen, M.; Cui, W.; Zhu, K.; Xie, Y.; Zhang, C.; Shen, W. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J. Hazard. Mater. 2014, 267, 40–47.
  62. Su, J.; Zhang, Y.; Nie, Y.; Cheng, D.; Wang, R.; Hu, H.; Chen, J.; Zhang, J.; Du, Y.; Shen, W. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environ. Exp. Bot. 2018, 147, 249–260.
  63. Huo, J.; Huang, D.; Zhang, J.; Fang, H.; Wang, B.; Wang, C.; Ma, Z.; Liao, W. Comparative proteomic analysis during the involvement of nitric oxide in hydrogen gas-improved postharvest freshness in cut lilies. Int. J. Mol. Sci. 2018, 19, 3955.
  64. Aroca, A.; Gotor, C.; Romero, L.C. Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front. Plant Sci. 2018, 9, 1369.
  65. Huang, J.; Xie, Y. Hydrogen sulfide signaling in plants. Antioxid. Redox Signal. 2023, 39, 40–58.
  66. Dai, C.; Cui, W.; Pan, J.; Xie, Y.; Wang, J.; Shen, W. Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa. J. Proteom. 2017, 152, 109–120.
  67. Yun, B.W.; Skelly, M.J.; Yin, M.; Yu, M.; Mun, B.G.; Lee, S.U.; Hussain, A.; Spoel, S.H.; Loake, G.J. Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol. 2016, 211, 516–526.
  68. Santolini, J.; André, F.; Jeandroz, S.; Wendehenne, D. Nitric oxide synthase in plants: where do we stand? Nitric Oxide 2017, 63, 30–38.
  69. Astier, J.; Gross, I.; Durner, J. Nitric oxide production in plants: an update. J. Exp. Bot. 2018, 69, 3401–3411.
  70. Hancock, J.T.; Neill, S.J. Nitric oxide: Its generation and interactions with other reactive signaling compounds. Plants 2019, 8, 41.
  71. Hancock, J.T.; Russell, G.; Craig, T.J.; May, J.; Morse, H.R.; Stamler, J.S. Understanding hydrogen: Lessons to be learned from physical interactions between the inert gases and the globin superfamily. Oxygen 2022, 2, 578–590.
  72. Xu, S.; Zhu, S.; Jiang, Y.; Wang, N.; Wang, R.; Shen, W.; Yang, J. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 2023, 370, 47–57.
  73. Huang, P.; Li, C.; Liu, H.; Zhao, Z.; Liao, W. Hydrogen gas improves seed germination in cucumber by regulating sugar and starch metabolisms. Horticulturae 2021, 7, 456.
  74. Huang, P.; Li, C.; Che, P.; Liu, H.; Zhao, Z.; Feng, L.; Liu, X.; Liao, W. Hydrogen gas enhanced seed germination by increasing trehalose biosynthesis in cucumber. J. Plant Growth Regul. 2023, 42, 3908–3922.
  75. Song, R.; Feng, C.; Qi, J. Effects of hydrogen-rich water on barley seed germination under drought stress. Xinjiang Agric. Sci. 2022, 59, 79.
  76. Song, R.; Zhang, X.; Feng, C.; Zhang, S.; Song, L.; Qi, J. Exogenous hydrogen promotes germination and seedling establishment of barley under drought stress by mediating the ASA-GSH cycle and sugar metabolism. J. Plant Growth Regul. 2023, 42, 2749–2762.
  77. Chang, J.; Li, J.; Li, J.; Chen, X.; Jiao, J.; Li, J.; Song, Z.; Zhang, B. The GA and ABA signaling is required for hydrogen-mediated seed germination in wax gourd. BMC Plant Biol. 2024, 24, 542.
  78. Mansory, S.; Bahreini, M.; Tadi, S.H. Comparison between the effect of activated waters on lentil seed germination using various plasma reactors and hydrogen injection system. arXiv 2023, arXiv:2309.03721.
  79. Fu, X.; Ma, L.; Gui, R.; Li, Y.; Yang, X.; Zhang, J.; Imran, M.; Tang, X.; Tian, H.; Mo, Z. Hydrogen rich water (HRW) induces plant growth and physiological attributes in fragrant rice varieties under salt stress. Res. Sq. 2020, https://doi.org/10.21203/rs.3.rs-21074/v1.
  80. Jiang, Y.; Ye, Q.; Ma, L.; Yang, X.; Zhang, J.; Mo, Z. Regulation of growth and physiological properties of fragrant rice seedlings by hydrogen-rich water (HRW) under nitrogen-deficient conditions. J. Plant Growth Regul. 2023, 42, 2221–2231.
  81. Ma, L.; Kong, L.; Gui, R.; Yang, X.; Zhang, J.; Gong, Q.; Qin, D.; Zhuang, M.; Ashraf, U.; Mo, Z. Application of hydrogen-rich water modulates physio-biochemical functions and early growth of fragrant rice under Cd and Pb stress. Environ. Sci. Pollut. Res. 2021, 28, 58558–58569.
  82. Wu, Q.; Su, N.; Huang, X.; Ling, X.; Yu, M.; Cui, J.; Shabala, S. Hydrogen-rich water promotes elongation of hypocotyls and roots in plants through mediating the level of endogenous gibberellin and auxin. Funct. Plant Biol. 2020, 47, 771–778.
  83. Yu, Y.; Zhang, H.; Xing, H.; Cui, N.; Liu, X.; Meng, X.; Wang, X.; Fan, L.; Fan, H. Regulation of growth and salt resistance in cucumber seedlings by hydrogen-rich water. J. Plant Growth Regul. 2021, 42, 134–153.
  84. Yang, L.; Tian, J.; Zhu, M.; Yu, B.; Sun, Y.I. Hydrogen-rich water improvement in root growth in maize exposed to saline stress. Cereal Res. Commun. 2024, 52, 581–590.
  85. Islam, M.A.; Shorna, M.N.A.; Islam, S.; Biswas, S.; Biswas, J.; Islam, S.; Dutta, A.K.; Uddin, M.S.; Zaman, S.; Akhtar-E-Ekram, M.; Syed, A. Hydrogen-rich water: a key player in boosting wheat (Triticum aestivum L.) seedling growth and drought resilience. Sci. Rep. 2023, 13, 22521.
  86. Yan, M.; Yao, Y.; Mou, K.; Dan, Y.; Li, W.; Wang, C.; Liao, W. The involvement of abscisic acid in hydrogen gas-enhanced drought resistance in tomato seedlings. Sci. Hortic. 2022, 292, 110631.
  87. Zhao, G.; Cheng, P.; Zhang, T.; Abdalmegeed, D.; Xu, S.; Shen, W. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium. Ecotoxicol. Environ. Saf. 2021, 224, 112640.
  88. Wu, Q.; Su, N.; Shabala, L.; Huang, L.; Yu, M.; Shabala, S. Understanding the mechanistic basis of ameliorating effects of hydrogen rich water on salinity tolerance in barley. Environ. Exp. Bot. 2020, 177, 104136.
  89. Fu, X.; Ma, L.; Gui, R.; Ashraf, U.; Li, Y.; Yang, X.; Zhang, J.; Imran, M.; Tang, X.; Tian, H.; Mo, Z. Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms. Int. J. Phytoremediation 2021, 23, 1203–1211.
  90. Cui, W.; Gao, C.; Fang, P.; Lin, G.; Shen, W. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J. Hazard. Mater. 2013, 260, 715–724.
  91. Cui, W.; Fang, P.; Zhu, K.; Mao, Y.; Gao, C.; Xie, Y.; Wang, J.; Shen, W. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol. Environ. Saf. 2014, 105, 103–111.
  92. Su, N.; Wu, Q.; Liu, Y.; Cai, J.; Shen, W.; Xia, K.; Cui, J. Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J. Agric. Food Chem. 2014, 62, 6454–6462.
  93. Zhang, X.; Su, N.; Jia, L.; Tian, J.; Li, H.; Huang, L.; Shen, Z.; Cui, J. Transcriptome analysis of radish sprouts hypocotyls reveals the regulatory role of hydrogen-rich water in anthocyanin biosynthesis under UV-A. BMC Plant Biol. 2018, 18, 1–14.
  94. Zhang, X.; Wei, J.; Huang, Y.; Shen, W.; Chen, X.; Lu, C.; Su, N.; Cui, J. Increased cytosolic calcium contributes to hydrogen-rich water-promoted anthocyanin biosynthesis under UV-A irradiation in radish sprouts hypocotyls. Front. Plant Sci. 2018, 9, 1020.
  95. Gu, T.; Wang, Y.; Cao, J.; Zhang, Z.; Li, G.; Shen, W.; Lou, Y.; Wang, H. Hydrogen-rich water pretreatment alleviates the phytotoxicity of bispyribac-sodium to rice by increasing the activity of antioxidant enzymes and enhancing herbicide degradation. Agronomy 2022, 12, 2821.
  96. Liu, Y.; Pan, J.; Ni, S.; Xing, B.; Cheng, K; Peng, X. Transcriptome and metabonomics combined analysis revealed the defense mechanism involved in hydrogen-rich water-regulated cold stress response of Tetrastigma hemsleyanum. Front. Plant Sci. 2022, 13, 889726.
  97. Liu, F.; Cai, B.; Sun, S.; Bi, H.; Ai, X. Effect of hydrogen-rich water soaked cucumber seeds on cold tolerance and its physiological mechanism in cucumber seedlings. Sci. Agric. Sin. 2017, 50, 881–889.
  98. Wang, X.; An, Z.; Liao, J.; Ran, N.; Zhu, Y.; Ren, S.; Meng, X.; Cui, N.; Yu, Y.; Fan, H. The role and mechanism of hydrogen-rich water in the Cucumis sativus response to chilling stress. Int. J. Mol. Sci. 2023, 24, 6702.
  99. Liu, F.; Jiang, W.; Han, W.; Li, J.; Liu, Y. Effects of hydrogen-rich water on fitness parameters of rice plants. Agron. J. 2017, 109, 2033–2039.
  100. Cheng, P.; Wang, J.; Zhao, Z.; Kong, L.; Lou, W.; Zhang, T.; Jing, D.; Yu, J.; Shu, Z.; Huang, L.; Zhu, W. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials. Plants 2021, 10, 2331.
  101. Guan, Q.; Ding, X.W.; Jiang, R.; Ouyang, P.L.; Gui, J.; Feng, L.; Yang, L.; Song, L.H. Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food Chem. 2019, 299, 125095.
  102. Li, M.; Zhu, G.; Liu, Z.; Li, L.; Wang, S.; Liu, Y.; Lu, W.; Zeng, Y.; Cheng, X.; Shen, W. Hydrogen fertilization with hydrogen nanobubble water improves yield and quality of cherry tomatoes compared to the conventional fertilizers. Plants 2024, 13, 443.
  103. Dong, W.; Shi, L.; Li, S.; Xu, F.; Yang, Z.; Cao, S. Hydrogen-rich water delays fruit softening and prolongs shelf life of postharvest okras. Food Chem. 2023, 399, 133997.
  104. Dong, W.; Cao, S.; Zhou, Q.; Jin, S.; Zhou, C.; Liu, Q.; Li, X.; Chen, W.; Yang, Z.; Shi, L. Hydrogen-rich water treatment increased several phytohormones and prolonged the shelf life in postharvest okras. Front. Plant Sci. 2023, 14, 1108515.
  105. Gao, H.; Li, F.; Chen, X.; You, Z.; Wei, L.; Liu, Y.; Liu, P.; He, M.; Hong, M.; Zhu, H.; Duan, X. The role of hydrogen-rich water in delaying the pulp breakdown of litchi fruit during postharvest storage. Food Chem. 2024, 453, 139694.
  106. Dong, B.; Zhu, D.; Yao, Q.; Tang, H.; Ding, X. Hydrogen-rich water treatment maintains the quality of Rosa sterilis fruit by regulating antioxidant capacity and energy metabolism. LWT 2022, 161, 113361.
  107. Liu, X.; Fang, H.; Huang, P.; Feng, L.; Ye, F.; Wei, L.; Wu, X.; Zhang, H.; Liao, W. Effects of hydrogen-rich water on postharvest physiology in scales of Lanzhou Lily during storage. Horticulturae, 2023. 9, 156.
  108. Ren, P.J.; Jin, X.; Liao, W.B.; Wang, M.; Niu, L.J.; Li, X.P.; Xu, X.T.; Zhu, Y.C. Effect of hydrogen-rich water on vase life and quality in cut lily and rose flowers. Hortic. Environ. Biotechnol. 2017, 58, 576–584.
  109. Li, L.; Liu, Y.; Wang, S.; Zou, J.; Ding, W.; Shen, W. Magnesium hydride-mediated sustainable hydrogen supply prolongs the vase life of cut carnation flowers via hydrogen sulfide. Front. Plant Sci. 2020, 11, 595376.
  110. Cai, M.; Du, H.M. Effects of hydrogen-rich water pretreatment on vase life of carnation (Dianthus caryophyllus) cut flowers. J. Shanghai Jiaotong Univ. 2015, 33, 41–45.
  111. Li, L.; Yin, Q.; Zhang, T.; Cheng, P.; Xu, S.; Shen, W. Hydrogen nanobubble water delays petal senescence and prolongs the vase life of cut carnation (Dianthus caryophyllus L.) flowers. Plant 2021, 10, 1662.
  112. Su, J.; Nie, Y.; Zhao, G.; Cheng, D.; Wang, R.; Chen, J.; Zhang, S.; Shen, W. Endogenous hydrogen gas delays petal senescence and extends the vase life of lisianthus cut flowers. Postharvest Biol. Technol. 2019, 147, 148–155.
  113. Shi, J.; Duncan, B.; Kuang, X. Hydrogen treatment: a novel option in liver diseases. Clin. Med. 2021, 21, e223–e227.
  114. Li, S.Y.; Xue, R.Y.; Wu, H.; Pu, N.; Wei, D.; Zhao, N.; Song, Z.M.; Tao, Y. Novel role of molecular hydrogen: the end of ophthalmic diseases? Pharmaceuticals 2023, 16, 1567.
  115. He, Y.; Tang, R.H.; Hao, Y.; Stevens, R.D.; Cook, C.W.; Ahn, S.M.; Jing, L.; Yang, Z.; Chen, L.; Guo, F.; et al. Nitric oxide represses the Arabidopsis floral transition. Science 2004, 305, 1968–1971.
  116. Mehla, N.; Sindhi, V.; Josula, D.; Bisht, P.; Wani, S.H. An Introduction to Antioxidants and Their Roles in Plant Stress Tolerance. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress; Khan, M., Khan, N., Eds.; Springer: Singapore, 2017.
  117. Hasanuzzaman, M.; Hossain, M.A.; da Silva, J.A.T.; Fujita, M. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In Crop Stress and its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, 2012. https://doi.org/10.1007/978-94-007-2220-0_8.
  118. Albatayneh, A.; Juaidi, A.; Jaradat, M.; Manzano-Agugliaro, F. Future of electric and hydrogen cars and trucks: an overview. Energies 2023, 16, 3230.
  119. Ajanovic, A.; Glatt, A.; Haas, R. Prospects and impediments for hydrogen fuel cell buses. Energy 2023, 235, 121340.