Downloads

Additional Files

Siddique, H., & Mukhleshur Rahman. Potential antibacterial compounds from Bangladeshi medicinal plants. Journal of Medicinal Natural Products. 2024. doi: Retrieved from https://www.sciltp.com/journals/jmnp/article/view/405

Article

Phytochemical Analysis of Bangladeshi Medicinal Plants Led to the Isolation of Anti-Staphylococcal Compounds

Holly Siddique 1,2,* and Mukhleshur Rahman 3

1 Department of Clinical and Pharmaceutical Science, School of Life and Medical Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK

2 Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK

3 Medicines Research Group, School of Health, Sports and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, UK

* Correspondence: h.siddique@herts.ac.uk

Received: 20 June 2024; Revised: 26 August 2024; Accepted: 12 September 2024; Published: 24 September 2024

 

Abstract: Antibacterial resistance is a major threat to global health. Due to its new resistance mechanisms, it is spreading and emerging widely, thereby threatening the treatment of common infectious diseases. Ancient history and ethnopharmacological studies highlighted the importance of natural sources in treating resistance infections. This study involved bioassay-directed phytochemical investigation on Bangladeshi medicinal plants selected by an ethnopharmacological survey to explore antibacterial compounds against Methicillin resistance Staphylococcus aureus (MRSA). In 2016, an ethnopharmacological survey conducted in Bangladesh led to the recommendation of 71 medicinal plants by 127 respondents (71 Ayurvedic/Unani practitioners, 21 Ayurvedic patients and 35 local inhabitants) for the treatment of infectious diseases. Based on the literature review, data analysis of the ethnopharmacological survey and ease of availability of the plants, 18 plants were initially selected and collected from Bangladesh. After the initial antibacterial screening of 18 plants, five plants with Minimum Inhibitory Concentration (MIC) of 32–512 µg/mL were chosen based on potential antibacterial activity. These are (Zingiber montanumUraria pictaDiospyros malabaricaCynometra ramiflora, Swertia chirayita. Extensive phytochemical work using different chromatographic and spectroscopic techniques on five Bangladeshi medicinal plants led to the isolation and identification of 24 compounds. Eight terpenes (zerumbol (3), zerumbone (4), buddledone A (5), germacrone (6), furanodienone (7), (−) borneol (1), camphor (2) and 8(17), 12-labdadiene-15, 16-dial) (8) were isolated from Zingiber montanum with the MIC (32– >128 µg/mL). Eugenol (14) and steroids were isolated from Uraria picta (MIC 64– >128 µg/mL). Lupane-type triterpenoids (Lupeol (20), betulin (21), betulinaldehyde (23), betulone (24) and messagenin (22) were isolated and identified from Diospyros malabarica with the MIC (64– >128 µg/mL), while pentacyclic triterpene (glutinol (10), glutinone (11)), simple phenolic (ethyl 4-ethoxybenzoate (9)) and steroids were isolated from Cynometra ramiflora with MIC (64– >128 µg/mL). A series of xanthones (swerchirin (16), swertiaperenin (17), bellidifolin (18) and decussatin (19)) were identified from Swertia chirayita with MIC (>128 µg/mL). 4-ethoxybenzoate (9) and messagenin (22) were identified as new natural compounds among these compounds. In terms of activity, 8(17), 12-labdadiene-15, 16-dial (8) (32 µg/mL against ATCC 5941) and zerumbol (3) (32 µg/mL against EMRSA 15) exhibited potential antibacterial activity. Phytochemical discoveries of Bangladeshi medicinal plants gave a new dimension to exploring anti-staphylococcal compounds.

Keywords:

antibacterial resistance MRSA clinical strains ethnopharmacological survey phytochemistry isolation column chromatography identification of chemical structure NMR mass spectrometry medicinal plant extract

References

  1. Courtenay, M.; Castro-Sanchez, E.; Fitzpatrick, M.; et al. Tackling antimicrobial resistance 2019–2024—The UK’s five year national action plan. J. Hosp. Infect. 2019, 101, 426–427.
  2. World Health Organization (WHO). Antimicrobial Resistance. A World Health Organization Resource 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 27 December 2018).
  3. World Health Organization (WHO). Essential Medicines and Health Products Information Portal. A World Health Organization Resource 2016. Available online: http://apps.who.int/medicinedocs/en/d/Jh2943e/8.html (accessed on 21 December 2016).
  4. European Centre for Disease Prevention and Control & World Health Organization. Regional Office for Europe. Antimicrobial resistance surveillance in Europe 2022–2020 data. Available online: https://www.who.int/europe/publications/i/item/9789289058537 (accessed on 18 August 2024).
  5. Founou, C.R.; Founou, L.L.; Essack, Y.S. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621.https://doi.org/10.1371/journal.pone.0189621.
  6. Dias, A.D.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336.
  7. Der Marderosian, A.; Beutler, J.A. The Review of Natural Products, 2nd ed.; Facts and Comparisons; Lippincott Williams & Wilkins: Seattle, WA, USA, 2003.
  8. Siddique, H.; Pendry, B.; Rahman, M.M. Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh–An ethnopharmacological perception. J. Herb. Med. 2021, 29, 100484. https://doi.org/10.1016/j.hermed.2021.100484.
  9. Rahman, M.M.; Garvey, M.; Piddock, L.; et al. Antibacterial terpenes from the oleo-resin of Commiphora molmol. Physiother. Res. 2008, 22, 1356–1360.
  10. Siddique, H.; Pendry, B.; Rahman, M.M. Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus. Molecules 2019, 24, 385. https://doi.org/10.3390/molecules24030385.
  11. Martinez, A.F.J.; Catalan, B.E.; Lopez, H.M.; et al. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. https://doi.org/10.1016/j.phymed.2021.153626.
  12. Takashi, K.; Nagao, R.; Masuda, T.; et al. The chemistry of Zerumbone IV Asymmetric synthesis of Zerumbol. J. Mol. Catal. B Enzym. 2022, 17, 75–79.
  13. Thosar, N.; Basak, S.; Bahadure, N.R.; et al. Antimicrobial efficacy of five essential oils against oral pathogen: An in vitro study. Eur. J. Dent. 2013, 7, S071–S077. https://doi.org/10.4103/1305- 7456.119078.
  14. Tamokou, D.D.J.; Kuiate, R.J.; Tene, M.; et al. The Antimicrobial Activities of Extract and Compounds Isolated from Brillantaisia lamium. Iran J. Med. Sci. 2011, 36, 24–31.
  15. Sabiha, S.; Serrano, R.; Hasan, K.; et al. The Genus Cynometra: A Review of Ethnomedicine, Chemical, and Biological Data. Plants 2022, 11, 3504. https://doi.org/10.3390/plants11243504.
  16. Royal botanic Garden, Kew. Plants of the World, Online. 2023. Cynometra ramiflora. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:489480-1 (accessed on 20 August 2024).
  17. Tiwari, P.; Rahuja, N.; Kumar, R.; et al. Search for anti-hyperglycemic activity in few marine flora and fauna. Indian J. Sci. Technol. 2008, 1, 1–5.
  18. Paguigan, N.D.; Castillo, D.H.B.; Chichioco-Hernandez, C.L. Anti-ulcer activity of Leguminosae plants. Arq. Gastroenterol. 2014, 51, 64–67.
  19. Sookying, S.; Pekthong, D.; Oo-puthinan, A.M.; et al. Antioxidant activity of Sala (Cynometra ramiflora Linn) plant extract. Open Conf. Proc. J. 2013, 4, 56.
  20. Subarnas, A.; Diantini, A.; Abdulah, R.; et al. Antiproliferative activity of primates-consumed plants against MCF-7 human breast cancer cell lines. E3 J. Med. Res. 2012, 1, 38–43.
  21. Afrin, S.; Pervin, R.; Sabrin, F.; et al. In vitro antioxidant activity, antimicrobial and preliminary cytotoxic activity of Cynometra ramiflora—A mangrove plant. J. Microbiol. Biotechnol. Food Sci. 2016, 6, 844–850.
  22. Qiu, J.; Feng, H., Lu, J. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl. Environ. Microbiol. 2010, 76, 5846–5851. https://doi.org/10.1128/aem.00704-10
  23. Swati, K.; Bhatt, V.; Sendri, N.; et al. Swertia chirayita: A comprehensive review on traditional uses, phytochemistry, quality assessment and pharmacology. J. Ethno. 2023, 300, 115714. https://doi.org/10.1016/j.jep.2022.115714.
  24. Ghosal, S.; Sharma, P.V.; Chaudhuri, R.K.; et al. Chemical Constituents of the Gentianaceae V: Tetraoxygenated Xanthones of Swertia chirata Buch.-Ham. J. Pharmacol. Sci. 1973, 62, 926–930.
  25. Bajpai, M.B.; Asthana, R.K.; Sharma, N.K.; et al. Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita. Planta Med. 1991, 57, 102–104.
  26. Saxena, A.M.; Murthy, P.S.; Mukherjee, S.K. Mode of action of three structurally different hypoglycemic agents: A comparative study. Indian J. Exp. Biol. 1996, 34, 351–355.
  27. Sultana, M.J.; Molla, M.T.H.; Alam, M.T.; et al. Investigation on antimicrobial activities of the plant Swertia chirata Ham. J. Life Earth Sci. 2007, 2, 31–34.
  28. Alam, K.D.; Ali, M.S.; Parvin, S.; et al. In vitro antimicrobial activities of different fractions of Swertia chirata ethanolic extract. Pak. J. Biol. Sci. PJBS 2009, 12, 1334–1337. https://doi.org/10.3923/pjbs.2009.1334.1337.
  29. Bhargava, S.; Garg, R. Evaluation of Antibacterial activity of aqueous extract of Swertia chirata Buch. Ham. Root. Int. J. Green Pharm. 2007, 2, 51–52.
  30. Bhargava, S.; Bhargava, P.; Shukla, K.; et al. Evaluation of Antimicrobial Potential of Sudarshan Churna: A Polyherbal Formulation. Iran. J. Pharmacol. Ther. 2008, 7, 185–187.
  31. Laxmi, A.; Siddhartha, S.; Archana, M. Antimicrobial screening of methanol and aqueous extracts of Swertia chirata. Int. J. Pharm. Pharm. Sci. 2011, 3, 142–146.
  32. Royal Botanic Garden, Kew. Plants of the World. 2023. Diospyros malabarica. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:322658-1 (accessed on 20 August 2024).
  33. Zhong, S.M.; Waterman, G.P.; Jeffreys, J.A.D. Naphthoquinones and triterpenes from African Diophyros species. Phytochemistry 1984, 23, 1067–1072.
  34. Khusnutdinova, E.; Galimova, Z.; Lobov, A.; et al. Synthesis of messagenin and platanic acid chalcone derivatives and their biological potential. Nat. Prod. Res. 2022, 36, 5189–5198. https://doi.org/10.1080/14786419.2021.1922904.
  35. Wal, A.; Srivastava, R.S.; Wal, P.; et al. Lupeol as a magical drug. Pharm. Biol. Eval. 2015, 2, 142–151.