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Abstract: This paper is concerned with the linear minimum mean square error estimation (LMMSE) for
the multi-rate sampling systems with multi-channel observation delays and unknown Markovian packet
losses. The original system is firstly transformed into a single-rate jumping parameter system with multi-
channel and delay-free observations by employing the lifting technique and introducing a set of reorga-
nized  observations  and  Markov  chains.  Then,  the  single-rate  system  is  converted  into  a  general  linear
system  without  delays  by  defining  a  new  group  of  extended  states.  Based  on  the  innovation  analysis
method, a liner minimum mean square error estimator is developed, and the estimator gain is obtained in
terms of generalized Riccati difference equations based on a set of coupled Lyapunov equations. There-
fore, the original state estimation problem is solved via the jumping parameter property. Finally, the con-
vergence of the Riccati equation is analyzed and a stationary filter is obtained. The novelty of this paper
lies in the introduction of the reorganized observations and multi-state Markov chains.

Keywords: linear estimation; markov packet losses; observation delay; reorganization observation meth-
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1. Introduction

H∞

With the development and progress of the control science, the networked control system (NCS) has become a
popular research topic due to its wide applications in various practical areas, such as fault warning [1], target tracking
[2],  power  grids  [3, 4],  transportation  [5],  and  energy  storage  [6].  However,  since  the  NCS  transmits  information
through the communication network, the limited bandwidth inevitably leads to unreliability of the transmission chan-
nel, such as transmission delays and data losses [7−11]. In recent years, state estimation for the NCSs has attracted
much attention with fruitful results reported in the literature such as the  filter [12, 13], Kalman filter [14, 15], set
membership filter [16, 17], and moving horizon estimator [18, 19].

As it is well known, in the practical industrial systems, the production process is always influenced by nonlin-
ear factors. Nevertheless, in the modeling process of real industrial systems, the system model should be designed as
simple as possible to maintain the essential system characteristics and facilitate system analysis and synthesis. There-
fore, the linear system model is employed to characterize the basic features of practical systems such as companding
signal processors [20], mixing tank systems [21] and direct current motors [22], where the influence of nonlinear fac-
tors on the system is not significant. In this paper, we focus on the optimal filtering for linear NCSs with delays and
packet losses.

As  for  state  estimation  of  discrete  systems  with  time  delays,  some  classical  techniques  have  been  developed
such as the state augmentation method [23],  polynomial method [24],  reorganized innovation analysis method [25]
and linear matrix inequality (LMI) algorithm [26, 27]. For state estimation of systems with packet losses, the packet
loss is usually characterized by the Bernoulli process [28] or the Markov process [29], and the estimator design can
borrow ideas from the estimator design for Markov jump linear systems (MJLSs) and multiplicative noise systems
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[30]. Actually, the NCSs with random transmission delays can also be transformed into systems with packet losses
and transmission delays [31−37].

On the other hand, the multi-rate sampling system, which has shown great importance in improving estimation
performance and energy conservation,  has been applied to replace the traditional  NCSs in a wide variety of  fields,
such as signal storage [38], transmission [39] and processing [40]. Up to now, there has been numerous results for the
single-rate  sampling  systems,  but  such  results  cannot  be  extended  to  deal  with  the  multi-rate  sampling  systems
directly,  which  motivates  the  investigation  of  state  estimation  for  the  multi-rate  sampled  systems  [41−44].  For  the
multi-rate uniform sampling system, the lifting technique and state augmentation method have been used in [45] to
transform the multi-rate system into an equivalent single-rate system, and then an LMMSE has been designed for the
augmented state. In [46], a novel “sampled output augmentation” method has been developed to deal with delayed
and  infrequent  primary  measurements  by  designing  a  multi-rate  Kalman  filter.  The  equivalence  has  been  verified
between the proposed method and the traditional  fixed-lag smoothing method.  For the random multi-rate sampling
system [47],  a  new state  model  has been developed to describe the dynamics of  the measurement  sampling points
during  the  state  update  period.  By  applying  the  innovation  analysis  methods,  a  non-augmented  state  estimator  has
been designed which is dependent on the data loss rate.

Unlike  the  filter  design  of  single-rate  sampling  systems,  the  state  estimation  of  multi-rate  sampling  systems
becomes more complicated accounting for the different sampling periods of sensor components. In summary, so far,
the state estimation has not been fully studied for NCSs with multi-channel observation delays and multiple unknown
Markov packet losses, especially for the unreliable multi-rate sampling system, which is worthy of further studies.

Motivated  by the  above analysis,  the  purpose  of  this  paper  is  to  design  a  linear  state  estimator  for  multi-rate
sampling systems with unknown multi-channel Markov packet losses and observation delays. A new set of two-state
Markov chains is introduced to characterize the multi-channel packet losses. The original multi-rate sampling system
is firstly transformed into a single-rate sampling system with packet losses and observation delays by the lifting tech-
nique,  and  further  converted  into  a  Markov jumping  parameter  system with  multi-channel  and  delay-free observa-
tions  by  using  the  reorganization  observation  technique  and  introducing  a  new  set  of  multi-mode  Markov  chains.
Since the original packet loss is unknown, the realization of the Markov chain in the converted models is unknown. A
new  set  of  states  is  defined  which  contains  both  the  original  system  state  and  the  indicator  functions  of  the  new
Markov chains. Based on such states, an LMMSE is derived on the basis of the innovation analysis method, where
the estimator gain is given in light of a set of generalized coupled difference Riccati equations (GCDREs) with a set
of coupled Lyapunov equations. So the original state estimation can be obtained through the characteristics of jump
parameters. It can be proven that under appropriate assumptions, the GCDREs converge to a set of generalized cou-
pled algebraic  Riccati  equations  (GCAREs),  resulting  in  a  stationary  filter.  The  stationary  filter  gains  can  be  per-
formed off-line. Finally, the effectiveness of this algorithm is verified through a simulation example. The main novel-
ties of the current research work can be summarized as the following aspects.

1)  The  state  estimation  problem  for  multi-rate  systems  with  multi-channel  observation  delays  and  unknown
Markov packet losses is considered.

2) The lifting technique and the reorganization observation technique are used to transform the original system
into a single-rate and delay-free one.

3) A new set of Markov chains is introduced to characterize the multi-channel packet losses.
4) The proposed algorithm is recursive and suitable for offline calculation.
The remainder of this paper is organized as follows. In Section 2, the problem statement and some preliminar-

ies are given. In Section 3, the LMMSE is developed based on the innovation analysis method. In Section 4, the con-
vergence analysis  is  given and a stationary filter  is  obtained.  Finally,  Section 5 provides a numerical  example,  and
Section 6 draws some conclusions.

Rn n Rm×n

m×n {· · · } L ∈ Rn×n LT

L E(.) 1[.]

Π(.)

Notations:  Throughout  this  paper,  denotes the  -dimensional  Euclidean space,  represents  the norm
bounded linear space of all  matrices. Moreover, diag  means a block-diagonal matrix. For , 
stands for the transpose of .  indicates the mathematical expectation operator,  stands for the Dirac measure,
and  means the occurrence probability of an event.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

Consider the following multi-rate sampling data system with multi-channel Markov packet dropouts and obser-
vation delays:
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x(k+1) = Aox(k)+Bowo(k), (1)

yl(kh) =γl(kh)Hlx((k− l)h)+ vl((k− l)h),
l = 0,1, · · · ,r,

(2)

x(k) ∈ Rn γl(kh) ∈ Rm, l = 0,1, · · · ,r wo(k) ∈ Rp

vl(kh) ∈ Rql , l = 0,1, · · · ,r l Ao,Bo

Hl, l = 0,1, · · · ,r γl(kh) ∈ {0,1} l = 0,1, · · · ,r
γl(kh)

where  is the state sequence,  is the measurement dropout sequence, 
is  the  process  noise,  and ,  is  the  measurement  noise  in  the th  channel.  and

,  are  matrices  of  appropriate  dimensions.  The random variables  ( )  are
employed to describe the observation dropout,, and each  is modeled as a time-homogeneous two-state Markov
chain with the following transition probability matrix (TPM):

Πl =

ï
1−ql ql

pl 1− pl

ò
, l = 0,1, · · · ,r, (3)

ql = Pr {γl(kh+h) = 1 | γl(kh) = 0} pl = Pr {γl(kh+h) = 0 | γl(kh) = 1}where  is the recovery rate and  is the failure
rate. Denote

πl,i(kh) = Pr {γl(kh) = i−1} , i ∈ {1,2}. (4)

0 < pl,ql < 1 πl =
[
πl,1 πl,2

]
Assume that . Then, there exists the limit probability distribution  with

πl,1 =
pl

pl+ql
, πl,2 =

ql

pl+ql
.

x0 wo(k) vl(kh) l = 0,1, · · · ,r
P0 Qo Rl (l = 0,1, · · · ,r) x0 wo(k) vl(kh) l = 0,1, · · · ,r

Assumption  1: The  initial  state ,  and , ,  are  null  mean  white  noises  with  covariance
matrices ,  and  ,  respectively. ,  and  ( ) are  mutually  indepen-
dent.

{γl(kh)}rl=0Assumption 2:  are mutually independent.
The estimation problem considered in this paper can be formulated as follows.

x̂(k | k)Problem: Given system (1)-(2), we aim to derive an LMMSE estimator  such that

E{∥x(k)− x̂(k | k)∥ | y(0), · · · ,y(kh)} (5)

is minimized, while the estimator gains are deterministic.

2.2. System Transformation

In this part, we first transform the multi-rate sampling data system into a single-rate system with multi-channel
observation delays and packet losses by the lifting technique.

h k+1By iterating (1) after  steps, the state update at the measurement sampling instant  can be established as
follows:

x((k+1)h) = Ax(kh)+w(kh), (6)

where

A = Ah
o, (7)

and the new system noise is defined as

w(kh) =
h−1∑
m=0

Am
o Bowo((k+1)h−m−1). (8)

The statistical properties of the system noise can be computed by

Qw =

h−1∑
m=0

Am
o BoQoBT

o

(
Am

o

)T
.

y(kh)
Next, we employ the reorganization observation method to transform the multi-channel observation delay system into
a delay-free one. In view of the definition of ,  we rearrange the received multi-channel observations to elimi-
nate the hindrance of the observation delay. A new sequence without delays is constructed as
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ȳr(sh) =


y0(sh)

y1((s+1)h)
...

yr((s+ r)h)

 ,0≤s < k− r, (9)

ȳk−s(sh) =


y0(sh)

y1((s+1)h)
...

yk−s(kh)

 ,k− r≤s≤k. (10)

ȳr(sh) ȳk−s(sh)Then,  and  are the delay-free observations which satisfy

ȳr(sh) =Γr(sh)H̄r x(sh)+ v̄r(sh),
0≤s < k− r,

(11)

ȳk−s(sh) =Γk−s(sh)H̄k−sx(sh)+ v̄k−s(sh),
k− r≤s≤k,

(12)

where

Γr(sh) =


γ0(sh)I 0 0 0
0 γ1((s+1)h)I 0 0

0 0
. . . 0

0 0 0 γr((s+ r)h)I

 ,

Γk−s(sh) =


γ0(sh)I 0 0 0
0 γ1((s+1)h)I 0 0

0 0
. . . 0

0 0 0 γk−s(kh)I

 ,

H̄r =


H0

H1
...

Hr

 , H̄k−s =


H0

H1
...

Hk−s

 ,

v̄r(sh) =


v0(sh)
v1(sh)
...

vr(sh)

 , v̄k−s(sh) =


v0(sh)
v1(sh)
...

vk−s(sh)

 ,
v̄r(sh) v̄k−s(sh)with  and  being white noises with zero means and following covariances:

R̄r = diag {R0, · · · ,Rr} ,
R̄k−s = diag {R0, · · · ,Rk−s} .

Moreover, we introduce a set of new multi-mode Markov chains to convert the delay-free system (9) and (10)
into a Markov jumping parameter system. This method is named as the reorganization Markov chain method.

0≤s < k− rFor ,

ȳr(sh) =Hr,θr(sh)x(sh)+ v̄r(sh), (13)

Hr,θr(sh) = Γr(sh)H̄r , (14)

where the jumping variable is specified by the following equations:

θr(sh) = 1+
r+1∑
i=1

2i−1γi−1(sh), (15)
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θr(sh) ∈ ℵr =
{

1,2, · · · ,2r+1
}
,

Nr = 2r+1with .
{θr(sh)} Π̄r = [p(r)

i j ]The TPM for the Markov process  is denoted as  which is given by

Π̄r = Πr ⊗Πr−1⊗ · · ·⊗Π0. (16)

θr(sh)Moreover, denote the distribution of  as

µr,i(sh) = Pr {θr(sh) = i} , i ∈ ℵr, (17)

µr(sh) =
[
µr,1(sh), · · · ,µr,Nr

(sh)
]T
. (18)

θr(sh) has the following unique stationary distribution:

µr =
[
ur,1, · · · ,µr,Nr

]T
,

lim
k→∞
µr,i(kh) = µr,i i ∈ ℵrwhich satisfies  for , and

µr = πr ⊗πr−1⊗ · · ·⊗π0. (19)

k− r≤s≤kFor ,

ȳk−s(sh) =Hk−s,θk−s(sh)x(sh)+ v̄k−s(sh), (20)

Hk−s,θk−s(sh) = Γk−s(sh)H̄k−s (21)

where the jumping variables are specified by the following equations:

θk−s(sh) = 1+
k−s+1∑

i=1

2i−1γk−s(sh), (22)

θk−s(sh) ∈ ℵk−s =
{

1,2, · · · ,2k−s+1
}
,

Nk−s = 2k−s+1with .
{θk−s(s)} Π̄k−s = [p(k−s)

i j ]The TPM for the Markov process  is denoted as  which satisfies

Π̄k−s = Πk−s⊗Πk−s−1⊗ · · ·⊗Π0. (23)

θk−s(sh)In addition, define the distribution of  as

µk−s,i(sh) = Pr {θk−s(sh) = i} , i ∈ ℵk−s, (24)

µk−s(sh) =
[
uk−s,1(sh), · · · ,µk−s,Nk−s

(sh)
]T
. (25)

θk−s(sh) has the following unique stationary distribution:

µk−s =
[
µk−s,1, · · · ,µk−s,Nr

]T
,

lim
k→∞
µk−s,i(k) = µk−s,i i ∈ ℵk−swhich satisfies  for , and

µk−s = πk−s⊗πk−s−1⊗ · · ·⊗π0. (26)

3. Design of the LMMSE Filter

Note that the packet loss in each channel is unknown, so the jumping parameters are unknown at the present
time.  In  this  paper,  we  will  estimate  the  state  and  Markov  chains  synchronously  by  introducing  the  following
stochastic variables:

zr, j(sh) ≜ x(sh)1{θr(sh)= j},

0≤s < k− r, j = 1, · · · ,Nr,
(27)
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zk−s, j(sh) ≜ x(sh)1{θk−s(sh)= j},

k− r≤s≤k, j = 1, · · · ,Nk−s,
(28)

zr(sh) =
[

zT
r,1(sh) · · · zT

r,Nr
(sh)

]T
, (29)

zk−s(sh) =
[

zT
k−s,1(sh) · · · zT

k−s,Nk−s
(sh)

]T
, (30)

1[.]where  represents the indicator function.
In view of (27) and (28), the new state equation can be written as the following compact form.

0≤s < k− r(i) For ,

zr, j(sh+h) =
Nr∑
i=1

Azr,i(sh)1{θr(s+1)= j}+

Nr∑
i=1

w(sh)1{θr(s)=i}1{θr(s+1)= j}

=

Nr∑
i=1

Azr,i(sh)pr
i j+

Nr∑
i=1

Azr,i(sh)
(
1{θr(s+1)= j}− pr

i j

)
+

Nr∑
i=1

w(sh)1{θr(s)=i}1{θr(s+1)= j}.

(31)

Then, we have

zr(sh+h) = Ārzr(sh)+Br,1(sh)+Br,2(sh), (32)

where

Ār = Π̄
T
r ⊗A,

Br,1(sh) =


∑Nr

i=1 Azr,i(sh)βr
i1(sh)

...∑Nr

i=1 Azr,i(sh)βr
iNr

(sh)

 ,

Br,2(sh) =


∑Nr

i=1 w(sh)1{θr(s)=i}1{θr(s+1)=1}
...∑Nr

i=1 w(sh)1{θr(s)=i}1{θr(s+1)=Nr}

 ,
βr

i j(sh) = 1{θr(sh+h)= j}− pr
i j.

k− r≤s≤k(ii) For ,

zk−s, j(sh+h) =
Nk−s∑
i=1

Azr,i(sh)pk−s
i j +

Nk−s∑
i=1

Azk−s,i(sh)
(
1{θk−s(s+1)= j}− pk−s

i j

)
+

Nk−s∑
i=1

w(sh)1{θk−s(s)=i}1{θk−s(s+1)= j}.

(33)

Then, we have

zk−s(sh+h) = Āk−szk−s(sh)+Bk−s,1(sh)+Bk−s,2(sh), (34)

where

Āk−s = Π̄
T
k−s⊗A,

Bk−s,1(sh) =


Nk−s

i=1 Azk−s,i(sh)βk−s
i1 (sh)

...
Nk−s

i=1 Azk−s,i(sh)βk−s
iNk−s

(sh)

 ,

Bk−s,2(sh) =


Nk−s

i=1 w(sh)1{θk−s(s)=i}1{θk−s(s+1)=1}
...

Nk−s

i=1 w(sh)1{θk−s(s)=i}1{θk−s(s+1)=Nk−s}

 ,
βk−s

i j (sh) = 1{θk−s(sh+h)= j}− pk−s
i j .
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Therefore, the newly constructed state can be estimated directly.
The observations are further transformed into the following forms:

ȳr(sh) = Ḡrzr(sh)+ v̄r(sh), 0≤s < k− r, (35)

ȳk−s(sh) = Ḡk−szk−s(sh)+ v̄k−s(sh), k− r≤s≤k, (36)

with

Ḡr ≜
[
Hr,1 · · · Hr,Nr

]
,

Ḡk−s ≜
[
Hk−s,1 · · · Hk−s,Nk−s

]
.

Thus,  the  LMMSE estimation  problem for  system (1)–(2)  is  transformed into  the  one  for  (1),  (29)  and  (30).
Before starting the design, some new definitions and notations are introduced.

kh 0≤s≤k− r ẑr(sh | sh−h)
zr(sh)

Definition 3.1: Given the time  for , the LMMSE predictor  is defined as the projection
of  onto the following linear space:

L
{

ȳr(sh)|0≤s<k−r

}
. (37)

k− r < s≤k ẑk−s(sh | sh−h) zk−s(sh)For , the LMMSE predictor  is defined as the projection of  onto the fol-
lowing linear space:

L
{

ȳk−s(sh)|k−r<s≤k

}
. (38)

ˆ̄yr(sh | sh−h) ȳr(sh)
ˆ̄yk−s(sh | sh−h) ȳk−s(sh)

Definition 3.2: Define the one-step prediction  as the projection of  onto the linear space of (31),
and  is the projection of  onto the linear space of (32). Denote the corresponding innovation
sequences as

εr(sh) = ȳr(sh)− ˆ̄yr(sh | sh−h), 0≤s < k− r, (39)

εk−s(sh) = ȳk−s(sh)− ˆ̄yk−s(sh | sh−h),
k− r≤s≤k,

(40){
εr(sh)|0≤s<k−r

} {
εk−s(sh)|k−r≤s≤k

}
then  we  can  say  that  and  are in  fact  mutually  independent  zero  mean  pro-
cesses, which span the same linear space as in (31) and (32). Furthermore, we define

Wr(sh) ≜ E
[
εr(sh)εT

r (sh)
]
, 0≤s < k− r, (41)

Wk−s(sh) ≜ E
[
εk−s(sh)εT

k−s(sh)
]
, k− r≤s≤k. (42)

Define

z̃r(sh | sh−h) ≜ zr(sh)− ẑr(sh | sh−h),
0≤s < k− r

z̃k−s(sh | sh−h) ≜ zk−s(sh)− ẑk−s(sh | sh−h),
k− r≤s≤k,

Zr,i(sh) ≜ E
{

zr,i(sh)zT
r,i(sh)

}
,0≤s < k− r, i ∈ ℵr,

Zr(sh) ≜ E
{

zr(sh)zT
r (sh)

}
= diag[Zr,i(sh)],0≤s < k− r,

Zk−s,i(sh) ≜ E
{

zk−s,i(sh)zT
k−s,i(sh)

}
,k− r≤s≤k, i ∈ ℵk−s,

Zk−s(sh) ≜ E
{

zk−s(sh)zT
k−s(sh)

}
= diag[Zk−s,i(sh)],k− r≤s≤k,

Z̃r(sh | sh−h) ≜ E
{

z̃r(sh | sh−h)z̃T
r (sh | sh−h)

}
,

0≤s < k− r,

Z̃k−s(sh | sh−h)

≜ E
{

z̃k−s(sh | sh−h)z̃T
k−s(sh | sh−h)

}
,

k− r≤s≤k.

The  second-order  moment  matrices  of  the  augmented  states  and  the  corresponding  innovation  sequences  are
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given below.
Zr(sh) Zk−s(sh)Lemma 3.1: The  second-order  moment  matrices  and  are diagonal  matrices,  which  can  be  calcu-

lated as follows.
0≤s < k− r Zr(sh)For , the matrix  satisfies

Zr(sh) = diag
[
Zr, j(sh)

]
, (43)

Zr, j(sh+h) =
Nr∑
i=1

p(r)
i j AZr,i(sh)AT +

Nr∑
i=1

µr,i(sh)p(r)
i j Qw,

j ∈ ℵr,

(44)

where the initial value is

Zr, j(0) = Π̄r(0)P(0), j ∈ ℵr. (45)

k− r≤s≤k Zk−s(sh)For , the matrix  satisfies

Zk−s(sh) = diag
[
Zk−s, j(sh)

]
, (46)

Zk−s−1, j(sh+h) =
Nk−s∑
i=1

p(k−s)
i j AZk−s,i(sh)AT +

Nk−s∑
i=1

µk−s,i(sh)p(k−s)
i j Qw,

j ∈ ℵk−s.

(47)

Proof: See appendix A.
Denote

Zr(sh) ≜
(
Zr,1(sh), · · · ,Zr,Nr

(sh)
)

(48)

Zk−s(sh) ≜
(
Zk−s,1(sh), · · · ,Zk−s,Nk−s

(sh)
)

(49)

and define the operators

Tr(sh,Zr) ≜ (Tr,1(sh,Zr), · · · ,Tr,Nr
(sh,Zr)), (50)

Tk−s(sh,Zk−s)
≜ (Tk−s,1(sh,Zk−s), · · · ,Tk−s,Nk−s

(sh,Zk−s)),
(51)

Dr(sh) ≜
(
Dr,1(sh), · · · ,Dr,Nr

(s)
)
, (52)

Dk−s(sh) ≜
(
Dk−s,1(sh), · · · ,Dk−s,Nk−s

(sh)
)

(53)

by

Tr, j(sh,Z) ≜
Nr∑
i=1

p(r)
i j AZr,i(sh)AT , 0≤s < k,

j = 1, · · · ,Nr,

(54)

Tk−s, j(sh,Z) ≜
Nk−s∑
i=1

p(k−s)
i j AZk−s,i(sh)AT ,

k− r≤s≤k, j = 1, · · · ,Nk−s,

(55)

Dr, j(sh) ≜
Nr∑
i=1

µr,i(sh)p(r)
i j Qw,

0≤s < k, j = 1, · · · ,Nr,

(56)
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Dk−s, j(sh) ≜
Nk−s∑
i=1

µk−s,i(sh)p(k−s)
i j Qw,

k− r≤s≤k, j = 1, · · · ,Nk−s,

(57)

then the coupled Lyapunov equation can be rewritten as

Zr(sh+h) = Tr(sh,Zr)+Dr(sh), 0≤s < k, (58)

Zk−s(sh+h) = Tk−s(sh,Zk−s)+Dk−s(sh),
k− r≤s≤k,

(59)

Wr(sh) ( 0≤s < k− r) Wk−s(sh) ( k− r≤s≤k)Lemma 3.2: The second moment matrices   and   satisfy the follow-
ing equations:

Wr(sh) =ḠrZ̃r(sh | sh−h)ḠT
r + R̄r,

0≤s < k− r,
(60)

Wk−s(sh) =Ḡk−sZ̃k−s(sh | sh−h)ḠT
k−s+ R̄k−s,

k− r≤s≤k.
(61)

Proof: See Appendix B.
Now, we are in the position to derive the main results of this paper. The covariance matrices of the estimation

errors are given by the following theorem.
Z̃r(sh+h | sh) ( 0≤s < k− r) Z̃k−s−1(sh+h | sh) ( k− r≤s≤k)Theorem 3.1: The covariance matrices   and   can be

formulated as follows.
0≤s < k− r Z̃r(sh+h | sh)(i) For ,  satisfies the following GCDRE:

Z̃r(sh+h | sh) =ĀrZ̃r(sh | sh−h)ĀT
r +E (Zr(sh))+Dg (Dr(sh))

− ĀrZ̃r(sh | sh−h)ḠT
r Wr(sh)−1ḠrZ̃r(sh | sh−h)ĀT

r ,
(62)

where the initial value is

Z̃r(0 | −h) = diag
{
µ1(0)P0, · · · ,µNr

(0)P0
}

(63)

and

E(Zr(sh)) =diag
{ Nr∑

i=1

pr
i jAZr,i(sh)AT

}
− ĀrZr(sh)ĀT

r ,

Dg(Dr(sh)) =diag
{ Nr∑

i=1

µr,i(sh)pr
i jQw

}
.

k− r≤s≤k Z̃k−s−1(sh+h | sh)(ii) For ,  satisfies the following GDCRE:

Z̃k−s−1(sh+h | sh) =Āk−sZ̃k−s(sh | sh−h)ĀT
k−s+E (Zk−s(sh))

+Dg (Dk−s(sh))− Āk−sZ̃k−s(sh | sh−h)ḠT
k−s

×Wk−s(sh)−1Ḡk−sZ̃k−s(sh | sh−h)ĀT
k−s,

(64)

where

Āk−s =Π̄
T
k−s⊗A,

E (Zk−s(sh)) =diag

{
Nk−s∑
i=1

p(k−s)
i j AZk−s,i(sh)AT

}
− Āk−sZk−s(sh)ĀT

k−s,

Dg(Dk−s(sh)) =diag

{
Nk−s∑
i=1

p(k−s)
i j µk−s,i(sh)Qw

}
.

Proof: See Appendix C.
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x(kh)On  the  basis  of  Theorem  3.1,  we  will  design  the  LMMSE  estimator  of  by  the  innovation  analysis
method.

x̂(kh | kh)Theorem 3.2: Consider the multi-rate sampling system (1) and (2). The LMMSE  is given by

x̂(kh | kh) =
Nk−s∑
i=1

ẑk−s,i(kh | kh), (65)

ẑk−s,i(kh | kh) i ẑk−s(kh | kh)where  is  the -th  block  element  of ,  which  can  be  obtained  iteratively  by  the  following
steps.

0≤s < k− r ẑr(sh | sh)
ẑr(0 | −1) = E(z(0)) = 0

(i)  For ,  can  be  calculated  by  the  following difference  equation  with  the  initial  value
 and

ẑr(sh | sh) =ẑr(sh | sh−h)+ Z̃r(sh | sh−h)ḠT
r

×Wr(sh)−1
(
ȳr(sh)− Ĝr ẑr(sh | sh−h)

)
,

(66)

ẑr(sh | sh−h) = Ār ẑr(sh−h | sh−h). (67)

k− r≤s≤k ẑk−s(sh | sh)(ii) For ,  can be computed by the following recursive equation:

ẑk−s(sh | sh) =ẑk−s(sh | sh−h)+ Z̃k−s(sh | sh−h)ḠT
k−s

×Wk−s(sh)−1
(
ȳk−s(sh)− Ĝk−sẑk−s(sh | sh−h)

)
.

(68)

ẑk−s(sh | sh−h) = Āk−sẑk−s(sh−h | sh−h). (69)

x(sh) zr(sh) zk−s(sh)Proof: On  the  ground  of  the  relationship  between ,  and ,  the  proof  follows  easily  from  the
derivation process of Theorem 3.1, and is therefore omitted here.

Note  that  Theorem 3.2 supply the  state  estimator  at  the  measurement  sampling time,  but  the  estimator  at  the
state update instant is not supplied.
Theorem 3.3: The original state estimator at the states update instant has the following form:

x̂(t) = x̂(kh | kh), t = kh, (70)

x̂(t) = x̂(kh+ p | kh), t = kh+ p, p = 1,2, · · · ,h, (71)

where

x̂(kh+ p | kh) = Ap
o x̂(kh | kh). (72)

x(kh) x(kh+ p) {y(0),y(h), · · · ,
y(kh)} kh
Proof: On the basis of the iteration of  in (6) and the projection of  on the linear space 

, we directly have the predictor of the state at instant .

4. Stationary Linear Filter

Z̃r(kh+h | kh) Z̃k−s(kh+h | kh)
k→∞

In  this  section,  we  will  show  that  the  GCDREs  (  and )  converge  to  a  set  of
GCAREs when . Then, we develop a stationary filter according to the obtained GCAREs. First, some defini-
tions and assumptions need to be made.

w(k) = 0 E
(
∥x(k)∥2

)
→ 0

k→∞ x0 E
(
∥x0∥2 <∞

)Definition  4.1 [30]: We  say  that  system  (1)  is  mean  square  stable  (MSS)  with ,  if  as
 for any initial condition  satisfying .

Assumption 4.1: System (1) is MSS according to Definition 4.1.
θ(kh)Assumption 4.2: The Markov chain  is ergodic.

Furthermore, we introduce the following GCAREs:

Ỹr =ĀrỸrĀT
r +E (Zr)+Dg (Dr)

− ĀrỸrḠT
r (ḠrỸrḠT

r + R̄r)−1ḠrỸrĀT
r ,

(73)

Ỹk−s =Āk−sỸk−sĀT
k−s+E (Zk−s)+Dg (Dk−s)

− Āk−sỸk−sḠT
k−s(Ḡk−sỸk−sḠT

k−s+ R̄k−s)−1

× Ḡk−sỸk−sĀT
k−s.

(74)
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Z̃r(sh+h | sh) 0≤s < k− r

Next, we will  prove that GCDREs (62) and (64) converge to GCAREs (73) and (74), respectively, and there
exists a set of positive semidefinite solutions to GCAREs (62) and (64). It can be seen that if the GCDRE (62) for

 ( )  converges,  then  after  finite  iterations,  (64)  converges  to  (74)  as  well.  In  addition,  if
there is a stable solution to (73), there is also a stable solution to (74). Therefore, it is only necessary for us to prove
the convergence of (62) and find the existence condition for the stable solution to (73).

Zr(sh)→Zr

s→∞ Zr =
(
Zr,1, · · · ,Zr,Nr

)Based  on  the  Proposition  3.36  in  [30],  and  in  light  of  Assumptions  4.1  and  4.2,  we  have  as
, where  is the unique solution to the following coupled algebraic Lyapunov equation:

Zr, j =

Nr∑
i=1

pr
i j

(
AZr,iAT +µiQw

)
, j ∈ Nr. (75)

Zr ∈ B
(
RNn

)
,Zr≥0 T(Zr) ∈ B

(
Rp,RNn

)
In what follows, for any matrix , define   as

T(Zr) ≜ −ĀrZrḠT
r (ḠrZrḠT

r + R̄r)−1. (76)

Recalling from (73), we make the following definition:

Tr(sh) ≜− ĀrZ̃r(sh | sh−h)ḠT
r

×
Ä

ḠrZ̃r(sh | sh−h)ḠT
r + R̄r

ä−1
.

(77)

Substituting (77) into (62) yields the following form:

Z̃r(sh+h | sh) =(Ār +Tr(sh)Ḡr)Z̃r(sh | sh−h)(Ār +Tr(sh)Ḡr)T

+E(Zr(sh))+Dg(Dr(sh))+Tr(sh)R̄rTr(sh)T .
(78)

Wr(sh)Notice from Lemma 3.2 that the inverse matrix of  is well defined since

ḠrZ̃r(sh | sh−h)ḠT
r + R̄r≥R̄r > 0. (79)

Z̃r(sh | sh−h)

The following is the main result of this section where the core task is to establish the asymptotic convergence of
. Before that, we need to present two auxiliary results.

κ infℓ≥κ µr,i(ℓh) > 0 i ∈ NrLet  be given such that  holds for all . Define

αr,i(sh) ≜ inf
ℓ≥κ
µr,i(ℓh+ κh).

i ∈ NrObviously, for , we have

µr,i(sh+ κh)≥αr,i(sh)≥αr,i(sh−h). (80)

Z̄r(sh) ≜
(
Z̄r,1(sh), · · · ,Z̄r,Nr

(sh)
)

Z̄r, j(0) = 0, j ∈ NrDefine  with  and

Z̄r, j(sh+h) =
N∑

i=1

pi j
(
AZ̄r,i(sh)AT +αr,i(sh)Qw

)
. (81)

Zr = (Zr,1, ...,Zr,Nr
)Recalling the definition of  in (75), we obtain the following result.

Z̄r(sh)
s→∞→ Zr

k = 0,1,2, · · · 0≤s < k− rLemma 4.1:  and for each , , we have

Zr(sh+ κh)≥Z̄r(sh)≥Z̄r(sh−h). (82)

Proof: See Appendix D.
Define

Vr(sh+h) = ĀrVr(sh)ĀT
r +E(Z̄r(sh))+diag

[
Nr∑
i=1

αr,i(sh)pi jQw

]
+ ĀrVr(sh)ḠT

r

(
ḠrVr(sh)ḠT

r + R̄r
)−1 ḠrVr(sh)ĀT

r

(83)

V(0) = 0 ḠrVr(sh)ḠT
r + R̄rwhere . Notice that from Lemma 3.2, the inverse matrix of  is well defined.

k = 0,1, · · · 0≤s < k− rLemma 4.2: For each , , we have

0≤Vr(sh)≤Vr(sh+h)≤Z̃r(sh+h+ κh | sh+ κh). (84)

Proof: See Appendix E.
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Yr

κ > 0 V(sh)
Yr(sh+ κh) Z̃r(sh+ κh | sh+ κh−h) Z̃r(sh+ κh | sh+ κh−h) Yr

In the following theorem, we first demonstrate the existence of a unique positive semi-definite solution to  for
the  GCARE.  Then,  we  prove  that  for  a  positive  integer ,  there  exist  lower  and  upper  bounds  and

 on  such that  asymptotically converges to .
{θr(sh)} Zr(0) =(

Zr,1(0), · · · ,Zr,Nr
(0)

)
Zr,i(0)≥0, i ∈ Nr Z̃r(0 | −h) = diag

[
Zr,i(0)

]
− Ẑr(0 | −h)≥0 Z̃r(kh+h | kh)

Theorem  4.1: Suppose  that  the  Markov  chain  is  ergodic  and  system  (1)-(2)  is  MSS.  For  any 
 with  and  , 

given by (58) and (62) satisfies

Z̃r(sh+h | sh)
s→∞→ Yr

Yrwhere  is the unique positive semidefinite solution to the following GARE:

X = ĀrXĀT
r +Qw+E(Zr)− ĀrXḠT

r (ḠrXḠT
r + R̄r)−1ḠrXĀT

r . (85)

Moreover,

rσ(Ār +T(Yr)Ḡr) < 1.

Proof: See Appendix F.
x̂(kh | kh)Corollary 4.1: The stationary LMMSE filter  is

x̂(s)(kh | kh) =
Nk−s∑
i=1

ẑ(s)
k−s,i(kh | kh), (86)

ẑ(s)
k−s,i(kh | kh) i ẑ(s)

k−s(kh | kh)where  is  the -th  block  element  of  which  can  be  obtained  iteratively  by  the  following
steps.

0≤s < k− r ẑ(s)
r (sh | sh)(i) For ,  can be calculated by the following difference equation:

ẑ(s)
r (sh | sh) =ẑr(sh | sh−h)+YrḠT

r (ḠrYrḠT
r + R̄r)−1

×
(
ȳr(sh)−Aẑ(s)

r (sh | sh−h)
)
,

0≤s < k− r,

(87)

ẑ(s)
r (sh | sh−h) = Ār ẑ(s)

r (sh−h | sh−h), (88)

k− r≤s≤k ẑ(s)
k−s(sh | sh)(ii) For ,  can be calculated as follows:

ẑ(s)
k−s(sh | sh) =ẑ(s)

k−s(sh | sh−h)+Yk−sḠT
k−s(Ḡk−sYk−sḠT

k−s+ R̄k−s)−1

×
(
ȳk−s(sh)−Aẑ(s)

k−s(sh | sh−h)
)
,

ẑ(s)
k−s(sh | sh−h) = Āk−sẑ

(s)
k−s(sh−h | sh−h).

(89)

Proof: From Theorem 4.2, it can be obtained that the error covariance of the infinite time state estimator converges to
a unique solution. Therefore, the result can be obtained immediately by replacing the error covariances in (66) and
(69) with the stable solution in the Theorem 4.2.
Corollary 4.2: The infinite time estimator at the state update instant has the following form:

x̂(s)(t) = x̂(s)(kh | kh), t = kh, (90)

x̂(s)(t) = x̂(s)(kh+ p | kh), t = kh+ p, p = 1,2, · · · ,h, (91)

where

x̂(s)(kh+ p | kh) = Ap
o x̂(s)(kh | kh). (92)

k→∞
{y(0),y(h), · · · ,y(kh)}
Proof: For ,  we  have  formulas  (90)  and  (91)  by  calculating  the  projection  of  formula  (92)  on  linear  space

. This completes the proof.

5. Numerical Example

Consider the following linear discrete-time system:
 
 
 

IJNDI, 2025, 4, 100005. https://doi.org/10.53941/ijndi.2025.100005

 
12 of 19

https://doi.org/10.53941/ijndi.2025.100005


x(kh+h) =
ï

2 1.1
−1.7 −0.8

ò
x(kh)+

ï
2

0.1

ò
w(kh),

y0(kh) = γ0(kh)
[

4 2
]

x(kh)+ v0(kh),

y1(kh) = γ1(kh)
[

3 1
]

x(kh−h)+ v1(kh),

w(kh) vi(kh) (i = 0,1) Q = 1
Ri = 1, i = 0,1 x0

where  and   are  white  noises  with  zero  means  and  covariance  matrices  and
, respectively. Set the initial value  and its covariance matrix to be

x0 =

ï
1
1

ò
, P0 =

ï
1 0
0 1

ò
.

Let the channel packet loss parameters be

p1 = 0.80, p2 = 0.20,
q1 = 0.75, q2 = 0.25.

x(k)
x(k)

For the proposed optimal state estimator, 50 Monte Carlo experiments are carried out and the following simulation
results are obtained. Figures 1 and 2 show the path of the Markov packet loss in two periods. Figure 3 shows the tra-
jectory of the real and its estimated value of the first component of . Figure 4 shows the trajectory of the real state
and the estimated value of the second component of . From the simulation results, it can be seen that the filter
derived in this paper has good tracking performances.
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Figure 1.  An sample path of packet loss of the first channel.
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Figure 2.  An sample path of packet loss of the second channel.
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x1Figure 3.  Simulation of the state value (blue line) and estimation (red line) of the first state component trajectory .
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x2Figure 4.  Simulation of the state value (blue line) and estimation (red line) of the first state component trajectory .

6. Conclusion

This paper has mainly studied the linear state estimation problem of multi-rate sampling systems with erasure
channels. For the multi-channel packet loss with unknown Markov jump parameters, a new Markov chain has been
established to simulate the random packet loss process. By introducing some new state variables and using the reor-
ganization technology, the original system model has been transformed into a delay-free Markov jump system. Then,
a  set  of  GDREs  has  been  conducted  based  on  the  Lyapunov  equations  with  analytical  solutions  obtained.  Finally,
convergence analysis has been conducted and a stationary filter has been obtained.
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Appendix A. Proof of Lemma 3.1

Zr,i(sh) 0≤s≤k, i = 1, · · · ,Nr

Proof: From (31), it can be shown that the following Lyapunov-like recurrent equation for the second moment
matrix  holds where .

Zr, j(sh+h) =E
{

zr,i(sh)zT
r,i(sh)

}
=

Nr∑
i=1

p(r)
i j AZr,i(sh)AT +

Nr∑
i=1

µr,i(sh)p(r)
i j Qw,

j = 1, · · · ,Nr.

(93)

Zr,i(0) = µr,i(0)P0 i = 1, · · · ,NHere, the initial value is  for .
Similarly, (47) can be obtained. The proof is completed.

Appendix B. Proof of Lemma 3.2

Proof: In view of (35)-(36) and the projection theorem, it can be obtained that

ˆ̄yr(sh | sh−h) = Ḡr ẑr(sh | sh−h), 0≤s < k− r, (94)
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ˆ̄yk−s(sh | sh−h) = Ḡr ẑk−s(sh | sh−h), k− r≤s≤k. (95)

Then, it can be deduced from (39) and (40) that

εr(sh) = Ḡr z̃r(sh | sh−h)+ v̄r(sh), (96)

εk−s(sh) = Ḡk−sz̃k−s(sh | sh−h)+ v̄k−s(sh). (97)

Wr(sh) Wk−s(sh)By the definitions of  and , we have

Wr(sh) = E
[
εr(sh)εT

r (sh)
]

= ḠrZ̃r(sh | sh−h)ḠT
r + R̄r, 0≤s < k− r,

(98)

Wk−s(sh) = E
[
εk−s(sh)εT

k−s(sh)
]

= Ḡk−sZ̃k−s(sh | sh−h)ḠT
k−s+ R̄k−s, k− r≤s≤k.

(99)

This completes the proof.

Appendix C. Proof of Theorem 3.1

0≤s < k− r ẑr(sh | sh) zr(sh)
{ȳr(0), · · · , ȳr(s)}
Proof: We first consider the case of . Define  as the projection of  onto the linear

space . Based on the projection formula, we have

ẑr(sh | sh) =ẑr(sh | sh−h)+E
[
zr(sh)εT

r (sh)
]

×E
[
εr(sh)εT

r (sh)
]−1
εr(sh).

(100)

From (96), we have

E
[
zr(sh)εr

T (sh)
]
= Z̃r(sh | sh−h)ḠT

r . (101)

Substituting (101) into (100), we have

ẑr(sh | sh) =ẑr(sh | sh−h)+ Z̃r(sh | sh−h)Ḡr
T

×Wr(sh)−1
(
ȳr(sh)− ˆ̄yr(sh | sh−h)

)
.

(102)

On the other hand, it can be seen from (32) that

ẑr(sh+h | sh) =Ār ẑr(sh | sh)

+E
[
Br,1(sh) | εr(0), εr(h), · · · , εr(sh)

]
+E

[
Br,2(sh) | εr(0), εr(h), · · · , εr(sh)

]
.

(103)

From Assumptions 1-2, we have

ẑr(sh+h | sh) =Ār ẑr(sh | sh).

=Ār ẑr(sh | sh−h)+Fr(sh)
(
ȳr(sh)− ˆ̄yr(sh | sh−h)

) (104)

with

Fr(sh) = ĀrZ̃r(sh | sh−h)ḠT
r Wr(sh)−1.

In view of (32), (102) and (104), we obtain

z̃r(sh+h | sh) = zr(sh+h)− ẑr(sh+h | sh)
= Ārzr(sh)+Br,1(sh)+Br,2(sh)

− Ār(ẑr(sh | sh−h)+ Z̃r(sh | sh−h)ḠT
r Wr(sh)−1

× (ȳr(sh)− ˆ̄yr(sh | sh−h)))
= Ār z̃r(sh | sh−h)+Br,1(sh)+Br,2(sh)
−Fr(sh)Ḡr z̃r(sh | sh−h)−Fr(sh)vr(sh).

(105)

Setting
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Br,0(sh) = (Ār −Fr(sh)Ḡr)z̃r(sh | sh−h),Br,3(sh) = Fr(sh)vr(sh), (106)

we have

z̃r(sh+h | sh) = Br,0(sh)+Br,1(sh)+Br,2(sh)+Br,3(sh). (107)

On the ground of the assumptions given in Section 2, we have

E{Br,0(sh)BT
r,l(sh)} = 0, l = 1,2,3 (108)

E{Br,1(sh)BT
r,l(sh)} = 0, l = 2,3 (109)

E{Br,2(sh)BT
r,3(sh)} = 0. (110)

Br,l(sh) l = 0,1, · · · ,3Furthermore, the covariance matrices of , , can be derived as follows:

E{Br,0(sh)BT
r,0(sh)} = (Ār −Fr(sh)Ḡr)Z̃r(sh | sh−h)(Ār −Fr(sh)Ḡr)T , (111)

E{Br,1(sh)BT
r,1(sh)} = diag

{ Nr∑
i=1

pr
i jAZr,i(sh)AT

}
− ĀrZr(sh)ĀT

r , (112)

E{Br,2(sh)BT
r,2(sh)} = diag

{ Nr∑
i=1

µr,i(sh)pr
i jQw

}
. (113)

E{Br,3(sh)BT
r,3(sh)} = Fr(sh)Rr(sh)FT

r (sh). (114)

In light of (108)–(114), the GCDRE can be obtained as follows:

Z̃r(sh+h | sh) =ĀrZ̃r(sh | sh−h)ĀT
r +E (Zr(sh))+Dg (Dr(sh))

− ĀrZ̃r(sh | sh−h)ḠT
r (ḠrZ̃r(sh | sh−h)ḠT

r + R̄r)−1

× ḠrZ̃r(sh | sh−h)ĀT
r .

(115)

Z̃r(sh | sh−h)(64) follows immediately from the similar derivation line of . This completes the proof.

Appendix D. Proof of Lemma 4.1

sh = 0
Zr(κh)≥0 = Z̄r(0) Z̄r(h)≥0 = Z̄r(0) sh

Proof: Let us now show (82) by the mathematical induction method. For ,  the result  is obvious, since
 and . Suppose that (82) holds for . Then, from (80) and (82), we have

Zr, j(sh+h+ κh) =
Nr∑
i=1

pi j
(
AZr,i(sh+ κh)AT +µr,i(sh+ κh)Qw

)
≥

Nr∑
i=1

pi j
(
AZ̄r,i(sh)AT +αr,i(sh)Qw

)
= Z̄r, j(sh+h)

≥

Nr∑
i=1

pi j
(
AZ̄r,i(sh−h)AT +αr,i(sh−h)Qw

)
= Z̄r, j(sh).

(116)

(82) is shown by the mathematical induction method.

Appendix E. Proof of Lemma 4.2

Proof: Let us show (84) by the mathematical induction method. Set

S r(sh) = −ĀVr(sh)ḠT
r

(
ḠrVr(sh)ḠT

r + R̄r
)−1
.

Vr(sh)≤Z̃r(sh+ κh | sh−h+ κh)If , it follows from (80) and (82) that
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Vr(sh+h) =(Ār +Tr(sh+ κh)Ḡr)Vr(sh)(Ār +Tr(sh+ κh)ḠT
r )

+E(Z̄r(sh))+diag

[
Nr∑
i=1

αr,i(sh)pi jQw

]
+Tr(sh+ κh)R̄r T(sh+ κh)T − (Tr(sh+ κh)−S r(sh))

×
(
ḠrV(sh)ḠT

r + R̄r
)

(Tr(sh+ κh)−S r(sh))T

≤(Ār +Tr(sh+h)Ḡr)Z̃r(sh+ κh | sh−h+ κh)
× (Ār +Tr(sh+ κh)Ḡr)T +E(Zr(sh+ κh))

+diag

[
Nr∑
i=1

µr,i(sh+ κh)pi jQw

]
+Tr(sh+ κh)R̄r Tr(sh+ κh)T

=Z̃r(sh+h+ κh | sh+ κh).

(117)

V(0) = 0≤Z̃r(κh | κh−h) Vr(sh)≤Z̃r(sh+ κh | sh+h+ κh) k = 0,
1,2, · · · 0≤s < k− r Vr(sh)≥Vr(sh−h)

Obviously, ,  showing  that  holds  for  all 
, . Similarly, if , from (80) and (82), we have

Vr(sh) =(Ā+S r(sh)Ḡr)Vr(sh−h)(Ā+S r(sh)Ḡr)T

+E(Zr(sh−h))+diag

[
Nr∑
i=1

αr,i(sh−h)pr
i jQw

]
+S r(sh)R̄rS r(sh)T − (S r(sh)−S r(sh−h))

×
(
ḠrVr(sh−h)ḠT

r +R̄r
)−1 (S r(sh)−S r(sh−h))T

≤(Ār +S r(sh)Ḡr)Vr(sh)(Ār +S r(sh)Ḡr)T +E(Zr(sh))

+diag

[
Nr∑
i=1

αr,i(sh)pr
i jQw

]
+S r(sh)R̄rS r(sh)T

=Vr(sh+h).

(118)

Vr(0) = 0≤Vr(h)Since , the induction argument is completed for (84).

Appendix F. Proof of Theorem 4.1

rσ(A) < 1
Yr ∈ B

(
RNn

)
rσ(Ār +T(Yr)Ḡr) < 1

Proof: From the MSS of system (1)-(2), we have  from Proposition 3.6 in [30]. Based on the stan-
dard results for GAREs, we conclude that there exists a unique positive semi-definite solution  to (85)
where  (see [48]).

YrFurthermore,  satisfies

Yr =(Ār +T(Yr)Ḡr)Y(Ār +T(Yr)Ḡr)T +E(Zr)
+Qw+T(Yr)V̄rT(Yr)T .

(119)

Y(0) = Z̃(0 | −1)Define  and

Yr(sh+h) =(Ār +T(Yr)Ḡr)Yr(sh)(Ār +T(Yr)Ḡr)T

+E(Zr(sh))+Qw+T(Yr)R̄rT(Yr)T .
(120)

Yr(sh)≥Z̃r(sh | sh−h)Let us show by induction that . Since

Z̃r(sh+h | sh) =E(Zr(sh))+Qw+ (Ā+T(Y)Ḡr)Z̃r(sh | sh−h)
× (Ār +T(Yr)Ḡr)T +T(Yr)QwT(Yr)T

− (Tr(sh)−T(Yr))
Ä

ḠrZ̃r(sh | sh−h)ḠT
r + R̄r

ä
× (Tr(sh)−T(Yr))T ,

(121)

from (120) and (121), we have
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Yr(sh+h)− Z̃r(sh+h | sh)

= (Ār +T(Yr)Ḡr)(Yr(sh)− Z̃r(sh | sh−h))
× (Ār +T(Yr)Ḡr)T + (Tr(sh)−T(Yr))

× (ḠrZ̃r(sh | sh−h)ḠT
r + R̄rt)(Tr(sh)−T(Yr))T .

(122)

Yr(0) = Z̃r(0 | −1) Yr(sh)≥Z̃r(sh | sh−h)
Yr(sh+h)≥Z̃r(sh+h | h) Yr(sh)≥Z̃r(sh | sh−h) k

By  definition,  we  have .  Suppose .  From  (122),  we  have
. Therefore, we have shown by induction that  holds for all .

Zr(sh)
k→∞→ Zr

Yr(sh)
k→∞→ Ȳr Ȳ

From the MSS and ergodicity of the Markov chain, we obtain .  Based on Proposition 3.36 in
[30], it can be concluded that , where  satisfies

Ȳr =(Ār +T(Yr)Ḡr)Ȳr(Ār +T(Yr)Ḡr)T

+E(Zr)+Qw+T(Yr)R̄r T(Yr)T (123)

Ȳr Yr Yr

Ȳr = Yr

and  is the unique solution to (123). Recalling that  satisfies (119), we know that  is also a solution to
(123). From the uniqueness of the solution, we have . Therefore, we have

Z̃r(sh | sh−h)≤Yr(sh) (124)

Yr(sh)
k→∞→ Yrand .

0≤Vr(sh)≤Yr(sh+h)≤Yr(sh+h+ κh)
Vr(sh) ↑ Vr k→∞ Vr≥0 αr,i(sh)

k→∞→ µr,i Zr(sh)
k→∞→ Zr Vr

Vr = Yr

Vr(sh)≤Z̃r(sh+ κh | sh−h+ κh)≤Yr(sh+ κh) Vr(sh)→ Yr Yr(sh)→ Yr

k→∞ Z̃r(sh | sh−h)
k→∞→ Yr

It  follows  from  (124)  and  (84)  that .  Thus,  we  can  conclude  that
 when  for . Moreover, from the fact that  and , we have 

satisfies  (85).  From the  uniqueness  of  the  positive  semi-definite  solution  to  (85),  we  conclude  that .  From
(124)  and  (84),  we  have .  Since  and  as

, we have . This completes the proof.
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