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Abstract: Data leakage and cyberattacks are usually inevitable due mainly to the vulnerability of
deployed communication networks. The paper proposes a distributed privacy-preserving filter based on
the maximum correlation criteria for microgrids. An improved distributed structure is first constructed
via adding decomposed innovation from neighbors in update steps. Then, an improved version of the
maximum correntropy criterion is defined to evaluate the local filtering performance as well as the con-
sensus performance by adding an innovation-related term. In light of fixed-point iterations and the
adopted filter structure, the desired filter gains are obtained recursively by optimizing the proposed
index. Furthermore, the profound analysis is performed to disclose that the filtering covariance of exter-
nal eavesdroppers is larger than target-side filters and hence the privacy of the microgrids can be pro-
tected. Finally, an example is exploited to verify its effectiveness.
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1. Introduction

Low-carbon demands lead to the conversion of fossil energy resources to renewable energy resources, which
also changes the energy structure and architecture of energy networks [1]. Moreover, the quality of energy produc-
tion and transmission is heavily influenced by various factors, including the environment, climate, people's activities,
and accidental events [2]. To enhance reliability and safety, SCADA systems should undergo the development and
application of new filtering and control theories and techniques such that the impact of the above mentioned factors
can be effectively restrained. As one of the fundamental theories, reliable and efficient distributed filtering is essential
in practical engineering to obtain dynamic internal states of microgrids [3—8].

Classical approaches to system monitoring include weighted least squares (WLS)-based algorithms, Kalman-
type algorithms, and stability-based algorithms in the field of microgrids [9]. WLS-based algorithms are suitable for
the state estimation of steady smart grids and its essence is an optimization solver to find a suitable vector to mini-
mize the difference between actual and estimated measurements. According to dynamic systems described by a state-
space model, Kalman filtering and its extended version have gained universal recognition and wide applications
because of their robust, real-time, and user-friendly execution capabilities[10—11]. For instance, an outlier-suppressed
Kalman filter has been adopted in [12] to acquire microgrids' operating states. A novel “consensus+innovation” based
algorithm proposed in [13] can realize the filtering accuracy obtained by centralized least squares estimators if con-
nectivity can be guaranteed. However, Gaussian assumption of noises, which could not be satisfied in many actual
engineering systems, shackles the applications of developed filtering algorithms. In other words, non-Gaussian noises
could lead to performance degradation and even instability of filtering algorithms[14]. As such, some interesting fil-
tering algorithms based on various entropy criteria, have been generated in the past few years for the systems suffer-
ing from general noises without any restriction in their distribution, see [8, 12, 15—16]. For instance, an anomaly-
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resistant filter based on local and edge measurements has been provided in [8] for wide-area power systems by
resorting to the unscented transformation and a fixed-point iteration. A correntropy-based filter has been developed in
[15] for nonlinear complex networks with uncertain dynamical bias.

Different from Kalman-based filtering, adopted kernel functions in correntropy indicators can provide high-
order statistics of stochastic variables benefiting from the map from the low-dimensional space to the high-dimen-
sional one. In the past few years, some interesting entropy filtering schemes have been developed based on different
criteria, including minimum error entropy and maximum correntropy [17—20]. Generally specking, maximum-cor-
rentropy filters own excellent filtering performance in presence of outliers or heavy-tailed impulsive noises [21],
while minimume-error-entropy filters can effectively handled the challenges caused by multi-modal noises [22]. When
the distribution paradigm is a matter of concern, a popular structure of filters is to add the latest neighbor estimation
into prediction steps. Obviously, the added part is generally handled as a known vector, which greatly reduces the
challenges of covariance calculation and gain design. However, the aforementioned entropy criteria, evaluating local
errors of both states and measurements, are incapable of effectively guaranteeing the filtering consensus. As such, one
of the motivations is to develop an entropy index to overcome such shortcomings. It should be point out that the con-
struction of consensus-related terms in a potential index is nontrivial if the transmission of neighbor information is
affected by unknown variables. Furthermore, gains of distributed filters cannot be easily received in the consensus-
based filtering framework. In addition, the corresponding filtering algorithms should not rely on cross-covariance to
meet plug-and-play requirements.

Distributed entropy filtering cannot be separated from the information exchanges among filters. Recently, some
interesting filtering approaches have been developed in [23—25] for systems subject to diverse physical constraints
and communication restrictions. It is worth mentioning that deployed networks are usually open and vulnerable.
Although a great deal of necessary protection has been executed, data leakage and cyberattacks, like ringworm, are
still hard to be shaken off [26—27]. The consequence caused by this phenomenon is usually enormous economic loss,
negative social impact, as well as damage of national security. Recently, several privacy-preserving methods have
been proposed using by encryption, watermarking, and perturbation addition strategies. Under perturbation addition
strategies, data security is generally guaranteed by injecting noises into sensitive data (forming ciphertexts) to maxi-
mize the distortion of eavesdroppers' inference. For instance, the security has been effectively improved by a water-
marking-based strategy in [28] and by a noise-addition-based rule in [29]. It is important to acknowledge that the cur-
rent fashion approaches display essential weaknesses in calculation burden, filtering performance, or relying on a
trusted third party. In order to possibly reduce the potential risk of privacy leakage, it is crucial to develop straight-
forward privacy-preserving strategies suitable for microgrids, which is another reason why our research is necessary.
As an alternative, state decomposition can render the locally real data indiscernible by eavesdroppers by resorting to a
simple arithmetical operation.

With the help of the above analysis, the paper devotes itself to developing a distributed secure filter with privacy-
preserving such that the leakage of crucial data for microgrids can be effectively avoided while the filtering perfor-
mance is not seriously compromised. To this end, two critical difficulties have to be overcome: 1) how to construct an
innovation-decomposition-based filter in a distributed way to ensure the privacy; and 2) how to find an entropy index
to cater to the evaluation of consensus-type distributed filters. The main contributions are outlined as follows:

1. a novel privacy-preserving filter in a distributed framework is constructed for microgrids via an innovation
decomposition rule;

2. a new maximum correntropy criterion (MCC) index is provided by adding a quantized term about the inno-
vation received from the neighbors;

3. carefully mathematical analysis is put forward to obtain the desired filter gains with the help of fixed-point
iterations, and

4. the profound investigation is performed to disclose that the filtering covariance of external eavesdroppers is
larger than target-side filters and hence the privacy of the microgrids can be protected.

The structure of this paper is organized as follows: Section 2 displays the problem formulation including micro-
grid models and constructed filters. Section 3 presents the performance of the proposed filtering, including the gain
design under MCC as well as privacy analysis. A illustrative simulation is given to demonstrate the effectiveness of
the proposed algorithm in Section 4 and the conclusion is given in Section 5.

Notations. The notation used throughout the paper is fairly standard. / denotes the identity matrix of compati-
ble dimension. For a matrix M, M” and M~' represent its transpose and inverse, respectively. The shorthand
diag{M,, M,,--- ,M,} denotes a diagonal matrix. R™ denotes the m-dimensional Euclidean space.
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2. Problem Formulation

2.1. The model of microgrids and the constructed filter

As the presentation in [30], a discretized version of microgrids in the rotating dg-frame can be modeled by

(M

Xk+1 = dek + Hdl/tk + Wy
Vi = CaXp+ v, 1€V

where the stacked state vector x is usually selected as [V, v¢, 1<, If., 14, 19, 19, 19, v?, vi, 14, I7]7 € R'2, the
known input u is [ vf, vl vi. vl 17, and the measurement y; € R™ is collected by sensor i. The vectors wy
and v; are non-gaussian noises with mean 0, and covariance Q, and Rj, respectively. The system matrices are
Ag=e" and B, = foh e" Bdh dependent on a given sampling period /, and matrices A and B being the same with
ones in [30]. Cy stands for the predetermined measurement matrix and V stands for the set of sensor nodes. Here,
x? and = describe the real and imaginary components of the variable %, which could be Vi, via 9 or 1% stand-
ing for the terminal voltage of voltage source converters, the voltage of common coupling points, and the currents of
both series filter » and transmission line rs. Finally, stochastic noises w; and v; and initial state x, are usually
assumed to be irrelevant.

To monitor the dynamic behavior of the above microgrids, the following accessible filter on target sides is con-
structed:

A _ At
xik = dei,k—l +Hduk_1,

& =2+ Kl + ZKijkfjk, 2

JeN;

where £y = ya — Ca Xy (s € N;U{Q}) is the ideal innovation acquired from its neighbors and itself, and Xz and Xk
denote one-step prediction and estimate, respectively. K and K;j are the filter gains to be acquired.
For the purpose of privacy protection, the ideal innovation needs to be decomposed as

Gk = aulix + Bl = i +§ﬁ, 3)

where @; obeying the uniform distribution U(0,&) and By = 1 -y are two time-varying and interdependent
stochastic scalar sequences and play the role of dynamical private keys. Furthermore, the parameter @ is also private
for all external eavesdroppers. It should be pointed out that such two scalars are accessible only for the filter i itself.
Under such a scenario, the actual filter on target sides can be organized as follows:

a— At
X = Gakii + Hawyy,

2 “)
Xik = xtk + Kl + Z ljk ko

where {B is the actual exchanged data among neighbors and could be eavesdropped by external eavesdroppers. The
framework of the addressed filtering issue can be found in Figure 1.

/—‘ Microgrids = 1 j
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Figure 1. The framework of the addressed filtering issue.

2.2. The aim of this paper

To evaluate the impact from non-Gaussian noises, this paper employs the following improved MCC

Ji&) = 22‘3 [£al) + 22 S G (14, 10) ZZG [£..)c)

=1 seN; (=1
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with &, = OF! (xf — £3), &, = Bu®! (Cakj, —yi) and &, = 0.50%} (1 = 0.5@)(Cak}; — yar) +3), where @y, @,
and w3 are three predetermined weighting coefficients, the matrices @r, and O, are, respectively, acquired by the
decomposition Or, @] =T} and O, Of = (1-a+a*/3)Ry, and G(x) = nexp{—7|x|} is the traditionally gener-
alized Gaussian density kernel function.

In summary, this paper addresses the privacy-preserving entropy filtering issue based on innovation decompo-
sition under non-Gaussian environments. Specifically, the main purpose is to acquire the desired filter gains Kjj
(j € N; U {i}) under a distributed way such that the dynamic behavior of the considered microgrid is effective moni-
tored while the state and measurement information is private for eavesdroppers. That is to say, the estimated state &3,
by the distributed filter i is unbiased and the MCC J;(%j;) is maximized for the designed gains K;j;, while this
obtained estimate is private if external eavesdroppers only collect the decomposed innovation {7,( (je N;uli}) and
then performs

se— _ e+
X = Gakip_y + Hauty—y,

net _ me— e of e B 5
X =R+ Ky + ZK:‘(jk;jk’ ©)
JEN;

where ikt means the eavesdroppers' estimate.

In summary, let us provide two quantitative evaluation metrics about privacy.
Definition 1 For the data set Y: = {4’? ,ffl oo ,{’fk, J € N;} until instant k received by both systems and eavesdrop-
pers, if the relationship

B{(x — ffiﬂk)(xk - fCiMk)TLVi} > B{(x — X ) (X — fCi,k|k)T|~y};}

holds, then the adopted privacy strategy is said to achieve secrecy, where the system and the eavesdropper should use
the greatest similar rule except for the inaccessible private key.

Definition 2 For the data set Y = {{fo,g“fl, e ,{fk, J € Ni} until instant k received by both systems and eavesdrop-
pers, if the relationship

Efxi — XY} # 0, E{xi — £yl Y3} = 0

holds, that is, the eavesdropper's estimation is biased, then the adopted privacy strategy is said to achieve secrecy,
where the system and the eavesdropper should use the greatest similar rule except for the inaccessible private key.
Remark 1 In comparison with (4), the gap in (5) reflects in the lacked term K, (y, resulting in a large filtering vari-
ance, which is just the essence of privacy protection of the proposed innovation decomposition. Such privacy is also
regarded as the relative secrecy defined in [31]. Furthermore, the calculation cost of the adopted privacy strategy is
lower than homomorphic encryption and state decomposition and hence satisfies the real-time requirement of filter-
ing algorithms.

Remark 2 In the past few years, some interesting algorithms of privacy-preserving Kalman filtering have been
developed, focusing on a) the privacy conditions [32—33], b) the trade-off between systems and eavesdroppers' per-
formances[34—35], and c) the quantized privacy leakage [36]. For instance, a trade-off index has been proposed in
[35] by scheduling the transformation matrix depending on the solution of an optimization issue with constraints.
Furthermore, the bound of the privacy leakage has been acquired in [36] with a hybrid privacy policy based on state
decomposition and noise injection. Different from these existing results based on filtering variance, our paper
employs the correntropy indicator to evaluate the filtering performance benefiting from its capability of involving
high-order statistics of stochastic variables and hence is more suitable for the case in the presence of outliers or heavy-
tailed impulsive noises. Furthermore, the quantized privacy leakage is disclosed by resorting to matrix analysis.
Remark 3 From the viewpoint of the adopted protection mechanisms, privacy-preserving strategies can be roughly
divided into three categories[37—39], that is, i) the cryptography-based approach, ii) the perturbation-injected
approach, and iii) algebraic transformation-based approaches. The mechanism of the first approach lies in that
eavesdroppers cannot effectively decrypt the information due to the ack of a crucial encryption scheme or private
keys. The idea of the second approach security is to maximize the distortion of eavesdroppers’ inference or bring into
indistinguishability between real data and inferred ones. The last one benefits from the introduced transformation
maps playing the role of a mask. The adopted method in our paper can be regarded as an algebraic transformation
approach, and the transformation map is just a linear one {ﬁ = Buli.

3. Main Results

This section focuses on acquiring a distributed design method of privacy-preserving filters under the improved
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MCC index. To this end, let us introduce errors
— A A + A at
€ix = Xik = Xjgs> € = Xik = Xig»
and the corresponding decomposition

+ & = apey +Buey
€y = &+ &y = e+ Puey.
Obviously, €ik and é,ﬁk describe the private and public estimation errors, respectively.
3.1. Gain design under MCC
According to the introduced decomposition, one has the following two error dynamics
{éEZ =Ga8f | +aawiy, ©)
ey = (I — KiCi)&jy, — auKinvi
and
éfk = Gdé/ij,k—l +BikWe-1,
& = U = KiCi)¥y — Z Ki_/’kcjké?k - Z BiKijiv k. )

JEN; JEN;ULi}

In accordance with (6)-(7), one can easily verify
E{ey) =Ele;} =0

which means the estimates are unbiased. In what follows, the covariance matrices of one-step prediction errors are
derived as

17 2 Eleg(ep)"} = a7, Gy + Qi
T 2B} = GaYii G + Qi
T 2 BEE)") = Gl G+ B O
Furthermore, according to e}, = &2 + &5, one has
i =8+ Y5+ 20845

or equivalently
= (1= 200,07 (05 + 5.

Obviously, it exposes the relationship among Y, (%" and %" . Now, let us provide the ideal weight T in the MCC
index for the subsequent gain design.
Theorem 1 For the constructed distributed filter (4) with private and public error dynamics (6) and (7), the esti-
mated states are unbiased and the covariance Y% and Y% satisfying the initial conditions T%" =% and
o = Tﬁ; are, respectively, bounded by T'S;" and Ff”, which can be iteratively updated by
{r(ii_ = GdrfkthZ + a,'szk—l s ®)
T4 = 2y B + o KRy Ky
and
Uy =Gl G + B0,
Ti = (1+ )24l B + B KuRu K,
2
_ @
+Z(1—a+ ?)Kiijijzik (9)
JEN;

NI+ KipC ol CLKT,
JEN;

where By =1 — Ky Cy. Furthermore, the filtering error covariance Yy and Ui, of the distributed filter (4) are
respectively bounded by Iy, and T, satisfying
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TR <y = Ty +T5),

1
1 - 2Bk (10)

TE<I} = e +1%).

_
1 =2auBi
Proof. Let us derive the variance 1§ and Tf,:. In light of the error dynamic (6), one can calculate
= Ea Ty Bl + o KR K.
Similarly, it can be easily derived from the error dynamic (7) for the filter i that
To! = B, 0% B + B2 KRy Ky
+ ) _BIBIK R K

JEN;
= B AT T P— =T
+ Z (‘—‘ikTij,ijkKijk + Kijkcjiji,k'—‘ik)
JEN;
B~ ~T T
+ Z Z Ki.fkcjijs,szkKisk'

JEN; seN;
Considering scalability, the above equation can be handled as follows

+ Y - 2 T
Tﬁc < (1 +8).:.,‘krrl~k ik +ﬂikKiikRikKiik

+Z UkR/kKrjk

JeN;
+INAI(1+ 5‘)2 K C 0 ChK
JEN;
Furthermore, one has the bounds I'j;" and I ﬁf governed by (8) and (9), respectively. Finally, noting the relationship
between T3 and Y, and considering the received matrices I'j;" and Fﬁ: result in the upper bound (10), which ends
the proof.

The above theorem provides the upper bound of filtering error covariance, which serves as the weight of MCC
to perform normalization. In what follows, let us select the suitable gain matrix to maximize such an MCC index. To
this end, introducing row vector I, with the /th element being 1 and other elements being zero, the MCC index can
be reorganized as follows

m

12
I =2 ;G(I@,A) + 223 G(Le,) + ZZG 1é.)

t=1 seN; (=1

Introduce the notations

Gl = G(Léy,) 2 Gy = GLE,) e,

with 9 being x or y for convenience, and then denote

Gl =G(L& ) |LE |7, Gl =G(Le, ) |LE |

as the values of GY, and G}, determined by the v-th iterative calculations at instant k. According to the concep-

tion of fixed point iteration, one has the following theorem.
Theorem 2 For the constructed distributed filter (4) with private and public error dynamics (6) and (7), the covari-
ance matrices Uy and 'Y’f:r are bounded by '}, and Fﬁc via (8) and (9). For the prefixed step size 0, the MCC index

is optimized when the filters gains are selected as K, = K”k and K;j = K;}k (j € N;) with

i a. -,
Ky =(My )™ Cl (My, + Z (1- E)Mlzv,sk),
SEN;
K== (M}, )"\ CopMy ., 0<v<$p

where
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£, = 0r ()" — %),
& = BuOr) (Cix(x3)” = yir),
£, =20 ((1-5)Cotuy ~y+ 25),
A} = T3 diaglGl Gt Gy,
A} = Tdiag Gl Gl Gl
A% = D diagl G 4 Gy Gl
M ;,/ik = lBisz;J Ay (”)1;1 ’
W= 4 (1- %)@)EfAi?k@El,,

v T T agiv
My = OF ARG + Z Cszz #Cits
seN;

(x ) - ‘xtk ztk évlk + Z l]k

Proof. Setting 0J(x},)/0x}, = 0 results in

Z@#IT (L&, ) 1€, | sign (L&, )

- sign (I[fy’k)

I[ ‘fy,k '

Zﬁ,kc O;' I G (L,

ZZ cz,;@ "/ G(L&,,)

seN; t=1

x|Lé&,, |‘Hsign (I&,,) =0

which can be reorganized by

. @ _ :
Z o5, I, G L, + ZﬁikC§®Rf LGy Lé,
=1

@ a
FT SN (1= D) O G 1

seN; (=1

12
(& —TyT (vx “loat s
B E Or, I Gi LeOr, (£ — X3)

=1
w m
2 2 ~T o -TYT (Y -1 ot
+ . E BiaCiaOr, 1, Gy 1O, (Cikxik _Yik)
=1
2:2: TOTIIG?
1 5 Czk Ry I{’ G?s[,klf
seN; =1

X ®1_'\’,slk ((] - %) (Cik)AC,; —Yik) + [fk) .

Furthermore, the above equation can be dealt with as follows
0=0r TA;Ck@) (R — %) — ~BiCi® RZ—Aik® (yzk Cikf%)
+ Z L (1= 5) Ci®x, A5 O Can(x — £3)
SEN;

1
_21(1 E) CieOp A5y Ox, (vie = Caey)
SEN;

1
+ z}\; U3 )C;<® TA~1k®R sko
sEN;
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which means
— -1 ~T jri B
Xy =%y - Z My Ci My o L
seN;
(11)
+ Mr ;. Cjy M’sz"'z Mlz o) i
seN;
where

x wy .. X X X
Ay = Edlag{Gil,k’Gi,Z,k”' Gl
Wy . .
Ay = ﬁdlag{Giyl,k?Giyz, s Gimxhs
w 3 z z z
Ay = idlag{Gisl,k’Gis,z,k e ’Gismk}’

Mra= O ALO +)  (1- % CZ;M’Z «Cits
SEN;

_ . 1 % o
MlZ,sk = 1 (1 - %)®E:A§ik®&1ﬂ

M ;’,ik = ﬁizk@z_ef A?]ke)l_e,i :
Compared to (4) and (11), one has
Kije = = M3 Ci M, 5,

Kin = My} Cl (M, + > (1- M’Z “
seN;
which make the MCC index maximal. However, it follows from A%, A} and A%, that these two gains highly depend
on the real-time estimate %, and thus cannot be directly calculated. Inspired by [20], one can access a computable
version via a fixed-point iterative approach, which completes the proof.
Remark 4 In this theorem, to obtain the gains, the approximation (X3,)” — Xy is employed for X=X in & &
and &,,. As such, the optimality of MCC cannot be realized due to the requirement of limited step size ¢ in actual
execution. Furthermore, the adopted MCC includes the term G([.fm]f) in comparison with traditional ones. As
such, the index J(x},) can be regarded as an improved version of MCC.

3.2. Privacy analysis

It should be pointed out that (5) does not include the term K, {5 in comparison with the structure (4) due to the
privacy of {5 . In Theorem 1, one discloses that the filter (4) is unbiased and hence E{x;} = E{%}} can be satisfied. In
what follows, let us discuss the privacy of the established filtering scheme from two cases: a) the external eavesdrop-
pers having the initial unbiased estimate, (i.e. £, = E{xo}), and b) the external eavesdroppers having the initial biased
estimate, (i.e. £ ;t E{Xo})

a) Case on X5 = E{xo}

Under this case, it is not difficult to verify that the external eavesdroppers can also receive a unbiased estimate
via the scheme (5) with any filter gains K, and K. Now, let us analyze the validity of eavesdroppers's scheme, that
is, discussing the bound of filtering error covariance.

It should be noted that external eavesdroppers do not know the adopted decomposition strategy, and hence usu-
ally regard all acquired innovation as normal one. Similar to (9), considering the filter dynamic (5), eavesdroppers can
acquire the incorrect error covariance

Tf/:—Gdek 1G5+Qk 15
T < (L+ &) - K5 Ca) Vi (= Ky Ca)”

1

+INI(L+&7) D K CuTs ChKE,

ijk
JEN;

eT
+ § : l]k Kljk’

JEN;ULi}

which lead to the upper bounds
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F?I{_:Gdr?+ 1G5+Qk s
FT— = (1 + 8)(1 Kﬁk zI\)F (I Ktlkclk)T
+INI(1+& )Z JkC]kFe—CT KT

ijk
JEN;

+ § : ljk l]k‘

JENULi}

On the other hand, one can obtain the relationship via the conditions developed in Theorem 1 as follows

_ — + 4
Iy +F€k 1 =20 1B | +Fﬁk—1

= a Gy
1- Zaikﬁik 1- 2aikﬂik 1- Zai,k—lﬁi,k—l
al/\ +Blk
o s
1- zalkﬁlk Qk !

which means

Iy = Gdr?:k—ng + Ok-1»

in the mean square sense, where ay = 1 — 5 and E{(1 —2a;4-18ix-1)/(1 —2aufi)} = 1 are taken into account.

Similarly, one cannot difficulty derive that

| A e+ +
ik ik — (1 + S)Eik lk ik E[T]‘( + atk Blk Kulengk
1 - 2Bk —2ayfi 1 -2y B
l-a+%
+Y KRk,
£ 1= 2aBy
re+ 1%
+INI( +g-1)21<,,kc,k Uk g ChLK
JEN; @it
€ ) a—m=T
-—— Bl g
=20 **
Nl +e™h +&h) T
KxCyT% CLK:
1- ZQ’Ikﬂtk EZN I ]k ]k
which yields
[ = (1 +8)Z TR Ey + Z KleRJk ijk
JENU{i}
+HINAL+&7)> " KipCal 3 CLK], ~ Iy,
JEN;
with
) &
@ t+fp—l1+a-%
Iy = KiiR K,
; 1 - 2Bk SR
£
+———Eu TS E]
1 _ zaikﬁik kL ik =ik
INI(1+€&7") T g
S 2 KHCATE UKy
Pl

Considering the expectation

E{a; +B;—1+a-a*/3} =&

(12)

(13)

(14)

one can conclude that the symmetric matrix IT; is positive definite in the mean square. Furthermore, compared (12)
to (13) and (14), the filtering covariance of external eavesdroppers is larger than object-side filters when they take the
same gains, i.e. K = Kij. According to Definition 1, the privacy of the developed filtering scheme can be guaran-

teed.
b) Case on Xio # E{xo}

The case means that the external eavesdroppers cannot capture the initial valid estimate. Denote the initial devi-
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ation &6 = E{xo} = 27 and the eavesdropping error e = xy — X5 . In light of (5), one has
Eley'} = G.Blel}_,} = GiEfel))

which means that eavesdroppers only acquire a biased estimate and hence the privacy can be guaranteed undoubt-
edly for a limited time. Furthermore, by resorting to the analysis of case a), it can be inferred that the filtering covari-
ance of external eavesdroppers is also larger than the filters on target sides when they take the same gains, i.e.
Ky = Kiji. According to Definition 2, the privacy of the developed filtering scheme can be guaranteed.

Combining the above two cases, one has the following conclusion.
Theorem 3 For the innovation decomposition strategy (3) adopted in target-side filters (4), when external eaves-
droppers take the same gains (i.e. Ky = K;) and perform the estimation algorithm (5) on eavesdropper sides, the
filtering of external eavesdroppers could be biased and the corresponding filtering covariance is larger than target-
side filters, and hence the information of target states is effectively protected.
Remark 5 In this paper, a novel privacy-preserving filtering scheme is developed in the framework of MCC indica-
tors. Different from traditional structures that neighbouring information is adopted in prediction steps, our structure
employs neighbouring decomposed innovation in update steps to improve the filtering performance. The challenges
from such a nontrivial structure is intelligently handled via introducing an improve MCC indicator. Furthermore, the
profound analysis is proposed to disclose that the filtering covariance of external eavesdroppers is larger than target-
side filters and hence the filtering accuracy are distinctly reduced.

4. Simulation Results

An example is utilized in this sections to show the effectiveness of the designed filtering algorithm based on
innovation decomposition. This engineering plant comprises two power generation units with the same physical
parameters in [30] and the deployed SCADA owns four sensors whose corresponding communication is the same
one in [3]. Furthermore, the noise intensity are set as Oy = 0.11, Ry, = Ry, = 0.08] and R3; = Ry, = 0.061. The
weights @, @, and @; in the employed MCC index J(x},) are selected as 1000, 0.02 and 0.0002, and the posi-
tive scalars 77, 7 and s are prefixed as 1, 0.1 and 2 in the utilized kernel function G(x). For the calculation of the
upper bound I'y, the parameter ¢ is selected as 0.2, and the initial values of some matrices are predetermined by
e = l'ﬁf =T, =0.11. Finally, for the purpose of security, the four pairs of time-varying sequences (a@,Bi)
(i€{1,2,---,4}) are generated via Matlab Software and plotted in Figure 2.

1.0 1.0
3 “ 3 Py
£ B £ *
= 05¢ = 05
=) g
< <
0 L L L . 0 L . L L
0 10 20 30 40 0 10 20 30 40
Time k Time k
1.0 1.0
3 3 a.
= O3 2 "
% 0.5} 8., % 0.5t P
< <
0 . . . . 0 . . . :
0 10 20 30 40 0 10 20 30 40
Time k Time k

Figure 2. Time-varying sequences (ex.8) for innovation decomposition.
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Now, let us discuss both the filtering performance and the privacy of the develop filter. Assume that eavesdrop-
pers can easily capture all parameters except for B. In light of the above setting, the simulation outcomes are demon-
strated in Figure 3 and Figure 4 for estimated states and eavesdropped ones, where the subscript ¢ in &3 ; or £, stands
for their £-th component. It is not difficult to see from these two figures that the gap between the real state (black lines)
and the eavesdroppers' state (blue lines) is obviously larger than that between the real state and estimated ones (red
lines). As such, the developed privacy rule make the capability of eavesdroppers dramatically recused.

1.0 |
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= £
E £
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051
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0 . . . .
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Figure 3. Actual state x; and its estimate by filter 1 and eavesdroppers.
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Figure 4. Actual state x; and its estimate by filter 2 and eavesdroppers.
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5. Conclusions

In this paper, a distributed privacy-preserving filtering algorithm has been developed via an improved MCC
index, in which a quantized term about the innovation received from the neighbors has been introduced to evaluate
local filtering performance as well as consensus performance. In light oft the constructed filter structure, the desired
filter gains have been resolved recursively in a distributed way. Finally, an example has been exploited to verify its
effectiveness. Future research directions will include, but not limited to, the developments of advanced filtering
schemes with hybrid privacy policies, consensus fusion rules or different entropy indexes [38, 39, 40].
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