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Abstract: Adaptive control is an effective approach for mitigating undesirable deviations in prescribed
closed-loop  plant  behavior.  However,  conventional  adaptive  control  methods  often  exhibit  slow
responses  in  various  control  tasks.  This  paper  introduces  a  novel  adaptive  control  method  to  achieve
fixed-time synchronization in  a  class  of  coupled neural  networks.  We present  coupled neural  networks
with multiple switching topologies and design a fixed-time adaptive control strategy for this system. Fur-
thermore,  we  establish  a  criterion  to  ensure  the  fixed-time  stability  of  the  closed-loop  system.  Two
numerical examples are provided to demonstrate the effectiveness and accuracy of the theoretical results.
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1. Introduction

Coupled neural  networks (CNNs) have garnered significant  attention due to their  applications in secure com-
munication  and  image  encryption  [1, 2].  Consequently,  extensive  research  has  been  conducted  on  the  dynamic
behaviors of CNNs [3−5]. Additionally, multi-weighted network models effectively represent real-world networked
systems [6, 7],  such as  social  networks,  inter-city  population flow networks,  and urban public  traffic  networks [8].
leading to considerable study on CNNs with multiple weights and their synchronization [9].

H∞

H∞

H∞

Synchronization, a collective behavior emerging from the dynamic coupling of units, is prevalent in nature, as
seen in the blinking of fireflies, the beating of heart cells, and the calling of frogs [10]. Due to its importance, numer-
ous studies have focused on synchronization in CNNs with multiple weights, extending to  synchronization, out-
put  synchronization,  and lag  synchronization  [11−13].  However,  these  synchronization  methods  often  operate  over
infinite  timescales,  which  is  impractical  for  applications  like  robotic  and  vehicle  platooning  control  [14, 15].  To
address this, finite-time stability was introduced [16] and extended to finite-time synchronization [17−20]. For exam-
ple, Rao et al. utilized impulsive controllers to achieve average stochastic finite-time synchronization for CNNs with
energy-bounded noises [17]. Tang et al. examined finite-time synchronization for CNNs with time-varying delays and
Markovian jumping topologies using an intermittent quantized control strategy [18]. Xu et al. studied finite-time syn-
chronization  in  privacy-preserving  complex  networks  [19].  Tian  et  al.  developed  a  delay-independent  dynamical
event-triggered  controller  for  finite-time  synchronization  in  neural-type complex  networks  with  intermittent  cou-
plings  [20].  Finite-time  synchronization  has  also  been  extended  to  multi-weighted  network  models  [21−24].  For
instance, Qiu et al.  used feedback controllers to address finite-time synchronization in multi-weighted complex net-
works with and without  coupling delays [21].  Xu et  al.  employed feedback and adaptive controllers  for  finite-time
synchronization  in  fractional-order  complex-valued  networks  [22].  Zhao  et  al.  addressed  finite-time  and  syn-
chronization in CNNs with multiple state and derivative couplings using nonchattering controllers [23]. Wang et al.
discussed finite-time synchronization and  synchronization for CNNs with multi-state and multi-derivative cou-
plings [24]. However, the settling time for finite-time synchronization heavily relies on the initial states, limiting its
practical application.

To mitigate  this  limitation,  fixed-time stability  was  proposed [25].  Research has  since  concentrated on fixed-
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time synchronization for  both single-weighted [26−28]  and multi-weighted network models  [29−31].  For  example,
Chen et al. explored practical fixed-time synchronization of uncertain CNNs using dual-channel event-triggered con-
trol methods [26].  Gong et al.  investigated finite-time and fixed-time synchronization in coupled memristive neural
networks with time delays using appropriate controllers [27]. Guo et al. studied fixed-time synchronization for CNNs
with intra-state switching and outer coupled matrix switching using feedback control methods [28]. Cao et al. focused
on fixed-time output  synchronization in complex networks with multiple state and output  couplings using adaptive
control  strategies  [29].  Liu  et  al.  designed  economical  control  strategies  for  fixed-time  synchronization  in  multi-
weighted complex networks [30]. Shi et al. proposed criteria for finite-time and fixed-time synchronization in multi-
weighted complex networks using a unified control strategy [31]. Despite these advances, few studies have specifi-
cally addressed fixed-time synchronization for multi-weighted networks.

In CNNs, practical factors can lead to switching phenomena in the network topology, such as the addition or
removal of links, external interferences in communication channels, and constrained sensing radii within engineering
networks [32]. Consequently, researchers have explored synchronization in both single and multi-weighted network
models  with  switching topologies  [33−39].  For  instance,  Hu et  al.  studied sampled-data-based event-triggered syn-
chronization in fractional and impulsive complex networks with time-varying delays and switching topologies [33].
Yang  et  al.  focused  on  global  exponential  cluster  synchronization  for  switched  fractional-order  complex  networks
using pinning control strategies [34]. Chen et al. examined synchronization in complex networks with mixed delays
and switching topologies [35]. Yang et al. addressed synchronization issues in time-delayed complex networks with
switching topologies, considering actuator faults and impulsive effects [37]. Wang et al. explored synchronization in
multiple memristive neural networks with switching topologies and parameter mismatches using periodic event-trig-
gered control  methods [36].  Additionally,  Wang et  al.  investigated synchronization in multi-weighted complex net-
works under attack [38]. Cao et al. explored adaptive control methods for synchronization in CNNs with switching
topologies [39]. Despite these advancements, few studies have specifically addressed the fixed-time synchronization
problem for CNNs with switching topologies.

Inspired by these studies, this paper focuses on adaptive fixed-time synchronization for a class of CNNs with
multiple switching topologies. The main contributions are shown as follows:

1.  Compared  with  existing  works  on  fixed-time  synchronization  [26−31],  this  paper  extends  these  research
results to the case of multiple switching topology.

2. Based on the system model, this paper proposes a novel adaptive fixed-time control strategy and develops a
criterion to ensure fixed-time synchronization for a type of CNNs with multiple switching topologies.

The rest of this paper is organized as follows: Section II provides notations and important lemmas. Section III
presents the main results. Section IV offers two numerical examples, and Section V concludes the paper.

2. Preliminary

2.1. Notations
R Rκ Rκ×m κ κ×m

K Iκ ∈ Rκ×κ G = (V,E)
K

V = {v1,v2, · · · ,vK} E ⊂ V×V sgnϕ(x) = sign(x)|x|ϕ

, ,  and  denote the set of real numbers, -dimensional Euclidean space, and the space of  real
matrices,  respectively.  represents  the  set  of  natural  numbers.  denotes  the  identity  matrix. 
represents  an  undirected  graph  that  describes  the  connectivity  interactions  among  nodes,  where  the  node  set  is

 and the edge set is . We define .

2.2. Lemmas
Lemma 2.1 (Fixed-time Stability [25]). Consider a nonlinear system defined by

ν̇(♭) = f (♭,ν(♭)), ♭ ∈ R+, ν(0) = ν0, (1)

ν ∈ Rκ f (♭, x) : R+×Rκ→ Rκ
V(x(♭)) : Rκ→ R

where  the  state  vector  and  the  nonlinear  function .  If  there  exists  a  continuous  and
positive definite function  with radial bounds fulfilling:

V(x(♭)) = 0⇔ x(♭) = 0;1. 
x(♭)2. Any solution  of system (1) satisfies the inequality

V̇(x(♭))≤−
(
η1Vϕ1 (x(♭))+η2Vϕ2 (x(♭))

)α
η1,η2,ϕ1,ϕ2,α ϕ1α > 1 ϕ2α < 1for parameters  with  and ,

τ(x0)then the origin of system (1) is said to be fixed-time stable, with the estimated settling time  satisfying

τ(x0)≤τmax =
1

ηα1 (ϕ1α−1)
+

1
ηα2 (1−ϕ2α)

, ∀x0 ∈ Rκ. (2)
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xJ≥0, (J = 1,2, · · · ,K) ϕ1 > 1,0 < ϕ2≤1Lemma 2.2 (Hölder’s Inequality [40]). For any vector  and parameters ,
then

K1−ϕ1

(
K∑

J=1

xJ

)ϕ1

≤
K∑

J=1

xϕ1
J ,

(
K∑

J=1

xJ

)ϕ2

≤
K∑

J=1

xϕ2
J . (3)

Lemma 2.3 (Kronecker Product [41]). The Kronecker product satisfies the following properties:

(Q1⊗Q2)T = QT
1 ⊗QT

2 , (Q1⊗Q2)−1 = Q−1
1 ⊗Q−1

2 ,
(βQ1)⊗Q2 = Q1⊗ (βQ2), (Q1+Q3)⊗Q2 = Q1⊗Q2+Q3⊗Q2

(Q1⊗Q2)(Q3⊗Q4) = (Q1Q3)⊗ (Q2Q4),

β Q1,Q2,Q3, Q4where  refers to a constant.  and  stand for matrices with suitable dimension.

3. Main Results

3.1. Network Model
Consider a class of multi-weighted CNNs with the switching topology defined by

ẋJ(♭) = −AxJ(♭)+B f (xJ(♭))+ J+
M∑

m=1

K∑
ı=1

cmα
m,ρ(♭)
Jı Γmxı(♭)+uJ(♭), (4)

J = 1,2, · · · ,K m = 1,2, · · · ,M
xJ = (xJ1, xJ2, · · · , xJκ) ∈ Rκ

A = diag(a1,a2, · · · ,aκ) ∈ Rκ×κ B = (BJı)κ×κ ∈ Rκ×κ f (xJ(♭)) = ( f1(xJ1(♭)), f2(xJ2(♭)), · · · ,
fκ(xJκ(♭)))T ∈ Rκ J = (J1, J2, · · · , Jκ)T ∈ Rκ 0 < cm ∈ R

0 < Γm ∈ Rκ×κ ρ : [0,∞)→ Ψ = {1,2, · · · ,ψ}
ρ(♭)

where  and  respectively refer  to  the indices  of  network nodes and multiple  weights
associated  with  coupling.  The  vector  represents  the  state  of  the  network.  The  matrices

 and  are given. The function 
 and the vector  are also defined. The coupling strength is . The

matrix  indicates the internal coupling matrix. The function  represents a
switching signal, and we define  can be described as the switching sequence

ρ̄ = {(w0, ♭0), (w1, ♭1), · · · , (wk, ♭k), · · · | wk ∈ Ψ,k ∈ K},

wk ♭k

ι ∈ {1,2, · · · ,ψ} αm,ι = (αJı)m,ι
K×K ∈ RK×K

where  corresponds  to  the  sequential  number  assigned  to  the  activated  subsystem  at  time .  For  each
, the outer coupling matrix  is defined as follows:

αm,ι
Jı =


αm,ι
ıJ > 0, if (J, ı) ∈ E,

−
K∑

p=1
p,ı

αm,ι
Jp , if J = ı,

0, otherwise.

uJ(♭) = (uJ1(♭),uJ2(♭), · · · ,uJκ(♭)) ∈ Rκ

fϵ(·) ϵ = 1,2, · · · , κ

The  control  input .  In  this  paper,  it  is  necessary  for  the  network  (4)  to
exhibit  connectivity,  and  different  coupling  forms  should  possess  an  identical  topology  structure.  Additionally,  we
assume that the function  ( ) satisfies the following inequality:

| fϵ(x1)− fϵ(x2)|≤γϵ |x1− x2|

x1, x2 0 < γϵ ∈ Rfor any  and some .

x⋆(♭) =
1
K

∑K

J=1
xJ(♭)We define , then one has

ẋ⋆(♭) =
1
K

K∑
J=1

ẋJ(♭)

=− 1
K

K∑
J=1

AxJ(♭)+
1
K

K∑
J=1

B f (xJ(♭))+ J

+
1
K

M∑
m=1

K∑
ı=1

cm

(
K∑

J=1

αm,ι
Jı

)
Γmxı(♭)

=−Ax⋆(♭)+
1
K

K∑
J=1

B f (xJ(♭))+ J+
1
K

K∑
J=1

uJ(♭),
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x⋆(♭) = (x⋆1 (♭), x⋆2 (♭), · · · , x⋆κ (♭))T ∈ Rκwhere vector .
eJ(♭) = xJ(♭)− x⋆(♭)The error state is  and satisfies

ėJ(♭) = ẋJ(♭)− ẋ⋆(♭)

= −AxJ(♭)+Ax⋆(♭)+B f (xJ(♭))−
1
K

K∑
J=1

B f (xJ(♭))

+

M∑
m=1

K∑
ı=1

cmα
m,ι
Jı Γmxı(♭)+uJ(♭)−

1
K

K∑
J=1

uJ(♭)

= −AeJ(♭)+B f (xJ(♭))−
1
K

K∑
J=1

B f (xJ(♭))

+

M∑
m=1

K∑
ı=1

cmα
m,ι
Jı Γm(eı(♭)+ x⋆(♭))+uJ(♭)−

1
K

K∑
J=1

uJ(♭)

= −AeJ(♭)+B f (xJ(♭))−
1
K

K∑
J=1

B f (xJ(♭))

+

M∑
m=1

K∑
ı=1

cmα
m,ι
Jı Γmeı(♭)+uJ(♭)−

1
K

K∑
J=1

uJ(♭),

e(♭) = (eT
1 (♭),eT

2 (♭), · · · ,eT
K(♭))T ∈ RKκwhere .
e(0) e(♭)Definition 3.1. For any values of , if error state  fulfills

lim
t→τ(e(0))

∥e(♭)∥ = 0, τ(e(0))≤τmax, (5)

τ(e(0)) τmaxwhere  represents a setting time and  is a fixed time, then network (4) can achieve fixed-time synchro-
nization.

3.2. Fixed-time Adaptive Control

An adaptive control strategy is designed to ensure that network (4) achieves fixed-time synchronization with the
following representation:

uJ(♭) = −
M∑

m=1

cmkm
J (♭)ΓmeJ(♭)−η1sgnϕ1 (eJ(♭))−η2sgnϕ2 (eJ(♭)) (6)

with the corresponding adaptive law

k̇m
J (♭) = cmeT

J (♭)ΓmeJ(♭)−η1sgnϕ1
(
km
J (♭)−κ̄m

J

)
−η2sgnϕ2

(
km
J (♭)−κ̄m

J

)
, (7)

J = 1,2, · · · ,K. ϕ1 > 0,0 < ϕ2≤1,β1 > 0,β2 > 0, κ̄m
J > 0

km
J (0) > 0

where  Parameters  and .  The  initial  value  of  the  adaptive
gain .

Remark 3.1. To achieve fixed-time synchronization in a class of CNNs with multiple switching topologies, this
paper  proposes  the  adaptive  controller  (8)  and  its  adaptive  law (9).  Considering  the  system model  (4)  and  control
objective, the first term is specifically devised in the controller (8) and adaptive law (9). According to the definition of
fixed-time stability, we design the second and third terms of the controller (8) and adaptive law (9), enhancing their
robustness based on the principles of robust adaptive control methods.

According to (6) and (8), we can get

ėJ(♭) = −AeJ(♭)+B f (xJ(♭))−
1
K

K∑
J=1

B f (xJ(♭))

+

M∑
m=1

K∑
ı=1

cmα
m,ι
Jı Γmeı(♭)−

M∑
m=1

cmkm
J (♭)ΓmeJ(♭)

−η1sgnϕ1 (eJ(♭))−η2sgnϕ2 (eJ(♭))−
1
K

K∑
J=1

uJ(♭).

κm (κ̄m
1 , κ̄

m
2 , · · · , κ̄m

K)Theorem 3.1. If there exist some positive parameters =diag   such that following inequality holds
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IK ⊗ (−2A+BBT + γ̂)+2
M∑

m=1

cm [(αm,ι− κ̄m)⊗Γm]≤0,

τmax

then  network  (4)  is  fixed-time  synchronization  by  using  controller  (8)  and  the  settling  time  function  is  globally
bounded by  defined by

τmax :=
1

η̃1(ϕ1−1)
+

1
η2(1−ϕ2)

,

η̃1 =min
¶

2
3−ϕ1

2 η1(MK)
1−ϕ1

2 ,2
3−ϕ1

2 η1(κK)
1−ϕ1

2

©
where .
Proof. Construct the following Lyapunov function for network (4)

V(♭) =
K∑

J=1

eT
J (♭)eJ(♭)+

M∑
m=1

K∑
J=1

(
km
J (♭)− κ̄m

J

)2
.

Based on (13), one derives

V̇(♭) = 2
K∑

J=1

eT
J (♭)ėJ(♭)+2

M∑
m=1

K∑
J=1

(
km
J (♭)− κ̄m

J

)
k̇m
J (♭)

= 2
K∑

J=1

eT
J (♭)

(
−AeJ(♭)+B f (xJ(♭))−

1
K

K∑
J=1

B f (xJ(♭))

+

M∑
m=1

K∑
ı=1

cmα
m,ι
Jı Γmeı(♭)−

M∑
m=1

cmkm
J (♭)ΓmeJ(♭)

−η1sgnϕ1 (eJ(♭))−η2sgnϕ2 (eJ(♭))−
1
K

K∑
J=1

uJ(♭)

)

−2η1

M∑
m=1

K∑
J=1

∣∣km
J (♭)− κ̄m

J

∣∣ϕ1+1−2η2

M∑
m=1

K∑
J=1

∣∣km
J (♭)− κ̄m

J

∣∣ϕ2+1

+2
M∑

m=1

K∑
J=1

cm
(
km
J (♭)− κ̄m

J

)
eT
J (♭)ΓmeJ(♭)

= 2
K∑

J=1

eT
J (♭)
Å
−AeJ(♭)+B f (xJ(♭))−B f (x⋆(♭))+B f (x⋆(♭))

− 1
K

K∑
J=1

B f (xJ(♭))+
M∑

m=1

K∑
ı=1

cmα
m,ι
Jı Γmeı(♭)−

M∑
m=1

cmkm
J (♭)ΓmeJ(♭)

−η1sgnϕ1 (eJ(♭))−η2sgnϕ2 (eJ(♭))−
1
K

K∑
J=1

uJ(♭)

)

−2η1

M∑
m=1

K∑
J=1

∣∣km
J (♭)− κ̄m

J

∣∣ϕ1+1−2η2

M∑
m=1

K∑
J=1

∣∣km
J (♭)− κ̄m

J

∣∣ϕ2+1

+2
M∑

m=1

K∑
J=1

cm
(
km
J (♭)− κ̄m

J

)
eT
J (♭)ΓmeJ(♭).

f (·)According to the assumption of function , we can obtain

2
K∑

J=1

eT
J (♭)B( f (xJ(♭))− f (x⋆(♭)))≤

K∑
J=1

eT
J (♭)

(
BBT + γ̂

)
eJ(♭),

γ̂ = (γ2
1,γ

2
2, · · · ,γ2

κ ) ∈ Rκ×κwhere diag .
Then, one has
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K∑
J=1

eJ(♭) =
K∑

J=1

(xJ(♭)− x⋆(♭))

=

K∑
J=1

(
xJ(♭)−

1
K

K∑
J=1

xJ(♭)

)

=

K∑
J=1

xJ(♭)−
K∑

J=1

xJ(♭)

= 0.

From (16), we can derive
K∑

J=1

eT
J (♭)

(
B f (x⋆(♭))− 1

K

K∑
J=1

B f (xJ(♭))−
1
K

K∑
J=1

uJ(♭)

)
= 0.

With the help of (3), one has
K∑

J=1

eT
J (♭)sgnϕ1 (eJ(♭)) =

K∑
J=1

eT
J (♭)sign(eJ(♭))|eJ(♭)|ϕ1

=

K∑
J=1

κ∑
r=1

|eJr(♭)|ϕ1+1

=

K∑
J=1

κ∑
r=1

(e2
Jr(♭))

ϕ1+1
2

≥ (κK)
1−ϕ1

2

(
K∑

J=1

eT
J (♭)eJ(♭)

) ϕ1+1
2

,

M∑
m=1

K∑
J=1

∣∣km
J (♭)− κ̄m

J

∣∣ϕ1+1
=

M∑
m=1

K∑
J=1

[
(km

J (♭)− κ̄m
J )2
] ϕ1+1

2

≥ (MK)
1−ϕ1

2

[
M∑

m=1

K∑
J=1

(km
J (♭)− κ̄m

J )2

] ϕ1+1
2

,

K∑
J=1

eT
J (♭)sgnϕ2 (eJ(♭)) =

K∑
J=1

eT
J (♭)sign(eJ(♭))|eJ(♭)|ϕ2

=

K∑
J=1

κ∑
r=1

|eJr(♭)|ϕ2+1

=

K∑
J=1

κ∑
r=1

(e2
Jr(♭))

ϕ2+1
2

≥

(
N∑

J=1

eT
J (♭)eJ(♭)

) ϕ2+1
2

,

M∑
m=1

K∑
J=1

∣∣km
J (♭)− κ̄m

J

∣∣ϕ2+1
=

M∑
m=1

K∑
J=1

[
(km

J (♭)− κ̄m
J )2
] ϕ2+1

2

≥

[
M∑

m=1

K∑
J=1

(km
J (♭)− κ̄m

J )2

] ϕ2+1
2

.

Substituting (15), (16), and (18) into (14), we can get
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V̇(♭)≤
K∑

J=1

eT
J (♭)

(
−2A+BBT + γ̂−2

M∑
m=1

cmκ̄
m
J Γm

)
eJ(♭)

+

M∑
m=1

K∑
J=1

K∑
ı=1

2cmα
m,ι
Jı eT

J (♭)Γmeı(♭)−2η2

(
K∑

J=1

eT
J (♭)eJ(♭)

) ϕ2+1
2

−2η1(κK)
1−ϕ1

2

(
K∑

J=1

eT
J (♭)eJ(♭)

) ϕ1+1
2

−2η2

[
M∑

m=1

K∑
J=1

(km
J (♭)− κ̄m

J )2

] ϕ2+1
2

−2η1(MK)
1−ϕ1

2

[
M∑

m=1

K∑
J=1

(km
J (♭)− κ̄m

J )2

] ϕ1+1
2

= eT (♭)

{
IK ⊗ (−2A+BBT + γ̂)+2

M∑
m=1

cm [(αm,ι−κm)⊗Γm]

}
e(♭)

−2η2V
ϕ2+1

2 (♭)−2η1(κK)
1−ϕ1

2

(
K∑

J=1

eT
J (♭)eJ(♭)

) ϕ1+1
2

−2η1(MK)
1−ϕ1

2

[
M∑

m=1

K∑
J=1

(km
J (♭)− κ̄m

J )2

] ϕ1+1
2

.

According to Theorem 3.1 and (3), one obtains from (19) that

V̇(♭)≤ −2η2V
ϕ2+1

2 (♭)−2η1(κK)
1−ϕ1

2

(
K∑

J=1

eT
J (♭)eJ(♭)

) ϕ1+1
2

−2η1(MK)
1−ϕ1

2

[
M∑

m=1

K∑
J=1

(km
J (♭)− κ̄m

J )2

] ϕ1+1
2

≤ −2η2V
ϕ2+1

2 (♭)−2η̃1V
ϕ1+1

2 (♭).

V(♭) = 0, t≥τmaxConsequently, we conclude that  and the estimated settling time can be derived as

τ(e(0))≤τmax =
1

η̃1(ϕ1−1)
+

1
η2(1−ϕ2)

.

limt→τ(e(0)) ∥e(♭)∥ = 0,∥e(♭)∥ = 0, t≥τmaxThen, one can prove that .
Remark 3.2. This paper designs a novel adaptive controller (8) to assist system (4) in achieving fxied-time synchro-
nization. Note that the proposed adaptive controller (8) can be applied in other nonlinear systems, such as vehicle pla-
tooning system [15] and memristive neural networks system [37].
Remark 3.3.  This  main  difficulty  in  dealing  with  fixed-time  synchronization  for  CNNs  with  multiple  switching
topologies by using the adaptive fixed-time control method comes from the switching topology, multiple weights and
design of adaptive fixed-time control strategy.

4. Numerical Examples

To illustrate the theoretical results and the effectiveness of the designed fixed-time adaptive control strategy, this
section provides three numerical examples.
Example 4.1. This example considers a class of CNNs with multiple switching topologies, where the network con-
sists of five nodes with three dimensions each. Furthermore, we select a commonly used activation function [11]:

ẋJ(♭) =−AxJ(♭)+B f (xJ(♭))+ J+0.3
5∑
ı=1

α1,ι
Jı Γ1xı(♭)

+0.5
5∑
ı=1

α2,ι
Jı Γ2xı(♭)+uJ(♭),

J = 1,2, · · · ,5, ι = 1,2.A = diag(0.7,0.5,0.8), J = (0.3,0.5,0.4)T .Γ1 = diag(0.8,0.8,0.9),Γ2 = diag(0.4,0.5,
0.7) fϵ(x) = 0.25(|x+1| − |x−1|), ϵ = 1,2,3
where 

. . The matrices are chosen as
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B =

Ñ
0.2 0.2 0.2
0.1 0.1 0.2
0.3 0.1 0.2

é
. (8)

α1,1,α1,2,α2,1, α2,2 α1,1→ α1,2→
α1,1→ ·· · α2,1→ α2,2→ α2,1→ ·· ·

Then,  there  are  four  probably  topologies  and ,  and  could  be  defined  by 
 and . The corresponding outer matrices are

α1,1 =

à
−0.5 0.3 0 0.2 0
0.3 −0.6 0.3 0 0
0 0.3 −0.4 0 0.1

0.2 0 0 −0.3 0.1
0 0 0.1 0.1 −0.2

í
,

α1,2 =

à
−0.6 0.4 0 0 0.2
0.4 −0.7 0 0.3 0
0 0 −0.2 0.2 0
0 0.3 0.2 −0.5 0

0.2 0 0 0 −0.2

í
,

α2,1 =

à
−0.8 0.4 0 0.4 0
0.4 −0.5 0.1 0 0
0 0.1 −0.3 0 0.2

0.4 0 0 −0.7 0.3
0 0 0.2 0.3 −0.5

í
,

α2,2 =

à
−0.7 0.3 0 0 0.4
0.3 −0.4 0 0.1 0
0 0 −0.2 0.2 0
0 0.1 0.2 −0.3 0

0.4 0 0 0 −0.4

í
.

fϵ(·)(ϵ = 1,2,3) γϵ = 0.5According to the definition of ,  we can obtain . By exploiting the YALMIP toolbox,
we can obtain the following matrices:

α1,1 α2,1Under  and 

κ1 =diag(3.9739,4.0064,4.0740,4.0202,4.0728),

κ2 =diag(3.7957,3.8304,3.8989,3.8420,3.8956).

α1,2 α2,2Under  and 

κ1 = diag(3.6922,3.7243,3.8537,3.7737,3.8159),

κ2 = diag(3.5265,3.5609,3.6904,3.6106,3.6512).

η1 = 2 η2 = 3 ϕ1 = 2 ϕ2 = 0.6 τmax = 11.4399
∥eJ(♭)∥

τmax km
J (♭)

We select the parameters , , , and . The fixed time is calculated as 
seconds. The simulation results are displayed in Figures 1 and 2. Figure 1 shows that the values of  decrease to
zero before the fixed time . As depicted in Figure 2, the values of  converge to positive bounded values.
Consequently, the network (22) achieves fixed-time synchronization, as validated by Theorem 3.1 and controller (8).
  

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8
∥e1(♭)∥
∥e2(♭)∥
∥e3(♭)∥
∥e4(♭)∥
∥e5(♭)∥τmax

∥eJ(♭)∥,J = 1,2, · · · ,5 τmax = 11.4399Figure 1.  Evolution of  for system (22) via controller (8) with settling time  s.
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tan(·)
Example 4.2. This example studies a class of CNNs with multiple switching topologies, where the network is com-
posed of five nodes, each with three dimensions. Moreover, we select  as the activation function [13]:

ẋJ(♭) =−AxJ(♭)+B f (xJ(♭))+ J+0.4
5∑
ı=1

α1,ι
Jı Γ1xı(♭)

+0.6
5∑
ı=1

α2,ι
Jı Γ2xı(♭)+uJ(♭),

J = 1,2, · · · ,5, ι = 1,2. A = diag(0.3,0.6,0.2), J = (0,0,0)T .Γ1 = diag(0.3,0.4,0.3),Γ2 = diag(0.2,0.3,0.4).
fϵ(x) = tanh(x), ϵ = 1,2,3.
where  

 The matrices are chosen as

B =

Ñ
0.4 0.1 0.3
0.2 0.3 0.3
0.1 0.2 0.5

é
. (9)

α1,1,α1,2,α2,1, α2,2 α1,1→ α1,2→
α1,1→ ·· · α2,1→ α2,2→ α2,1→ ·· ·

Then,  there  are  four  probably  topologies  and ,  and  could  be  defined  by 
 and . The corresponding outer matrices are

α1,1 =

à
−0.3 0.1 0 0.2 0
0.1 −0.2 0.1 0 0
0 0.1 −0.2 0 0.1

0.2 0 0 −0.3 0.1
0 0 0.1 0.1 −0.2

í
,

α1,2 =

à
−0.3 0.1 0 0 0.2
0.1 −0.5 0 0.4 0
0 0 −0.3 0.3 0
0 0.4 0.3 −0.7 0

0.2 0 0 0 −0.2

í
,

α2,1 =

à
−1.8 1.4 0 0.4 0
1.4 −2.5 1.1 0 0
0 1.1 −1.4 0 0.3

0.4 0 0 −0.9 0.5
0 0 0.3 0.5 −0.8

í
,

α2,2 =

à
−1.7 0.3 0 0 1.4
0.3 −0.9 0 0.6 0
0 0 −0.5 0.5 0
0 0.6 0.5 −1.1 0

1.4 0 0 0 −1.4

í
.

fϵ(·)(ϵ = 1,2,3) γϵ = 1According  to  the  definition  of ,  we  can  obtain .  By  using  the  YALMIP  toolbox,  one
obtains the following matrices:

α1,1 α2,1Under  and 
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κ1 =diag(5.8466,5.7193,5.9503,6.0387,6.0863),

κ2 =diag(6.0396,5.8595,6.1790,6.3101,6.3729).

α1,2 α2,2Under  and 

κ1 = diag(6.0080,6.1265,6.2717,6.0396,6.1064),

κ2 = diag(6.2220,6.3973,6.5996,6.2831,6.3571).

η1 = 3 η2 = 3 ϕ1 = 1.5 ϕ2 = 0.3 τmax = 3.54671
∥eJ(♭)∥

τmax km
J (♭)

We choose parameters , , , and . The fixed time is calculated as 
seconds. The simulation results are displayed in Figures 3 and 4. In Figure 3, it is observed that the values of 
approach zero before the fixed time . As depicted in Figure 4, the values of  converge to positive bounded
values. Consequently, the network (24) achieves fixed-time synchronization according to Theorem 3.1 and controller
(8).
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∥eJ(♭)∥,J = 1,2, · · · ,5 τmax = 3.54671Figure 3.  Evolution of  for system (24) via controller (8) with settling time s.
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Example  4.3. To  demonstrate  the  superiority  of  this  paper’s  control  strategy,  we compare  our  adaptive  fixed-time
control (AFTC) approach with the node-based adaptive control (NBAC) strategy [42] and the adaptive proportional-
integral control (APIC) method [11]. For fair comparisons, we use the same parameters as in Example 4.2.

The simulation results  are shown in Figures 5 and 6.  In Figure 5,  AFTC exhibits  a faster  convergence speed
compared to NBAC and APIC. As depicted in Figure 6, the adaptive gains of APIC are the lowest among the meth-
ods.  However,  APIC  cannot  ensure  that  the  system  error  remains  at  lower  values.  Therefore,  our  control  method
demonstrates superior performance.
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∥eJ(♭)∥,J = 1,2, · · · ,5Figure 5.  Evolution of  based on AFTC, NBAC, and APIC.
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5. Conclusion

In this paper, we have tackled the issue of fixed-time synchronization for a class of CNNs with multiple switch-
ing topologies. We derived a theoretical criterion to guarantee fixed-time synchronization and developed an adaptive
fixed-time control  strategy.  To validate  our  findings,  we presented two numerical  examples demonstrating the cor-
rectness and effectiveness of the proposed approach.
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