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Abstract: This paper explores a data-driven method to investigate the stabilization of intermittent con-
trolled discrete-time systems (ICDTSs) with unknown parameter matrices. First, the pre-collected input-
state data is used to supersede the accurate prior system model. Then, in order to obtain the data-depen-
dent stabilization conditions of ICDTSs, a novel relationship is  designed among the control  width,  rest
width,  and  convergence  rate.  Unlike  existing  studies  on  the  stabilization  of  ICDTSs,  this  paper  only
needs the collected input-state data. Thus, the time-consuming process of model identification is avoided.
In addition, to ensure an acceptable performance level, the data-based guaranteed cost control is also con-
sidered, and a new cost function for ICDTSs is correspondingly built. Finally, two simulations are pre-
sented to demonstrate the effectiveness of the theoretical analysis.
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1. Introduction

Discrete-time systems  (DTSs)  have  wide  engineering  applications  in  networked  control  systems,  image  pro-
cessing,  and  model  identification  [1–5].  Recently,  stability  and  stabilization  analysis  of  DTSs  have  captured  much
attention [6–8], and various kinds of control schemes have been proposed for stabilization of DTSs, for instance, pin-
ning control [9], event-triggered control [10, 11], quantized control [12], intermittent control (IC) [13], etc.

In some practical applications, control of these systems is intermittent, and it is unnecessary to maintain contin-
uous control, such as wind power generation management, vehicle control and orbital adjustment of space shuttles. In
addition,  IC  has  demonstrated  significant  advantages  over  continuous  control  [14–15]. For  example,  IC  can  effec-
tively reduce the control cost because the control input is zero in some time domains, thus having the advantages of
robustness and ease of implementation [13]. Nevertheless, it is not easy to stabilize the DTSs via IC since the closed-
loop modes with nonzero inputs and the open-loop modes with zero inputs operate alternately according to the con-
trol law. Nowadays, interesting work on the stabilization of DTSs via IC has been reported in [16–20]. To achieve the
control performance, certain restrictions must be imposed on the width of both control and rest intervals. For exam-
ple, the control interval with a common lower bound and the rest interval with an upper bound have been proposed to
constrain  IC in  [16, 17].  This  restriction greatly  reduces  the  flexibility  of  the  IC scheme.  Authors  in  [18–20]  have
proposed the  nations  of  the  average  activation  time  ratio  and  the  average  activation  period  for  intermittently  con-
trolled neural networks. Note that the idea behind the average activation time ratio and the average activation period,
comes from the average dwell time, which requires designing the distribution of the control intervals throughout the
time domain in advance. Obviously, the analysis technique of the average activation time ratio and the average acti-
vation period poses more challenges to verify the stabilization conditions in practical applications. As a result, it pro-
motes us to develop novel analysis techniques for intermittently controlled DTSs (ICDTSs).

In the control community, it is insufficient to focus only on the control performance, and attention should also
be paid to the adequate level of the control performance [21]. For this point, guaranteed cost control (GCC) has been
proposed to stabilize the controlled system and guarantee a specific performance level for arbitrary admissible values.
Recently,  some  researchers  have  devoted  themselves  to  the  GCC  of  DTSs  based  on  continuous  control  schemes
[22–24]. Moreover, authors in [25] and [26] have put forward the optimal guaranteed cost IC (GCIC) for air condi-
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tioning systems and uncertain  freight  train  systems,  respectively.  In  [27],  the  guaranteed cost  periodic  IC has  been
designed to achieve finite-time consensus of nonlinear multi-agent systems.  Note that  some constraints  on IC have
not been solved in references [25–27], and the above IC results have been limited to continuous-time systems. To the
best  of  our  knowledge,  the  GCC for  ICDTSs  has  still  been  an  open  problem,  which  is  another  motivation  of  this
paper.

It is important to emphasize that all the results in [16–20], [22–27] are model-based ones which require accu-
rate model information. Generally, the control synthesis criteria (for dynamical systems based on accurate mathemat-
ical models) are often too idealistic in practical applications, making it a challenging task to acquire accurate mathe-
matical models in many engineering systems. Compared with the establishment of an accurate mathematical model, it
is easier to measure the trajectories of a system. Naturally, by using measured system data, the model identification
methods have been developed to estimate the system models and solve the subsequent control tasks [28–30], whereas
the process of system identification is usually time-consuming.

To  overcome  this  drawback,  data-driven  control  methods  have  drawn  much  attention  [31–35], where  con-
trollers are synthesized directly from available data without explicitly undertaking model identification. This approach
not only has conceptual appeals, but also valuable merits in situations where system identification becomes arduous
or even unattainable. Considering the advantages of these aforementioned methods, research results on stabilization of
dynamic systems have been reported successively based on data-driven control. For instance, data-driven control has
been addressed in [36] for delayed discrete-time systems. In [37], authors have discussed the stabilization, robustness
and  linear  quadratic  regulation  problems  of  discrete-time  systems  based  on  data-driven  formulas.  The  data-driven
control of distributed event-triggered systems has been considered in [38–39]. Utilizing input-state data, the stability
analysis of continuous-time systems has been investigated in [40] under aperiodic sampling control. Considering the
actuator faults, the data-driven fault-tolerant control has been considered in [41] for discrete-time systems, where sta-
bility  conditions  have  been  derived  based  on  the  linear  matrix  inequality  method.  Nevertheless,  to  the  best  of  our
knowledge, the existing research on data-driven control has been limited to continuous control schemes, and there has
been no published results on data-driven stabilization of ICDTSs, not to mention GCC for ICDTSs. This inspires the
research of this paper.

In summary, this paper focuses on studying data-driven stabilization of ICDTSs. The novelties of this paper lie
in the following aspects.

1) Data-dependent stabilization criteria are derived for ICDTSs, where accurate information of system matrices
is not required. This essentially improves the findings obtained in [16–20].

2)  The  novel  IC  scheme  is  proposed  that  can  adjust  flexibly  the  relationships  among  the  control  width,  rest
width, and convergence rate, and this relaxes those corresponding conditions in [16–20].

3) A new cost function is constructed for ICDTSs. Based on the proposed IC scheme, GCC technique and data-
driven approach, the data-driven GCIC scheme is designed for DTSs with unknown system matrices.

The rest of this paper is structured as follows. Section II introduces the model of ICDTSs and some preliminar-
ies,  while  Section  III  gives  sufficient  criteria  for  the  stabilization  and  GCC  of  ICDTSs.  Section  IV  provides  two
numerical examples to show the effectiveness of our results. Finally, Section V presents the conclusions.

2. Model Formulations and Preliminaries

2.1. Notations
N N+ Rn Rn×m n

n×m In n 0n×m n×m
A† A diag(·) ∥ · ∥

∗ Na = {0,1, · · · ,a}.

 and  are  the  sets  of  nonnegative  integers  and  positive  integers,  respectively.  and  denote -
dimension vectors and  real matrices,  is the identity matrix with -dimension.  is the  zero matrix.

 means the Moore-Penrose inverse of .  denotes the diagonal matrix.  is the Euclidean norm of a vec-
tor. The symbol  in a matrix denotes the symmetric part of the matrix. 

2.2. System Description
{kn}n∈N limn→+∞ kn = +∞ k0 = 0 K2n =

[k2n,k2n+1) K2n+1 = [k2n+1,k2n+2) n ∈ N
Consider  a  strictly  increasing  time  sequence  with  and .  Denote 

 and , . An ICDTS is modeled as

x(k+1) = Ax(k)+Bu(k),k ∈ K2n, (1a)

x(k+1) = Ax(k), k ∈ K2n+1,n ∈ N, (1b)

x(k) ∈ Rn u(k) = Kx(k) ∈ Rm K2n K2n+1

A ∈ Rn×n B ∈ Rn×m

x(0) = x0 ∈ Rn

where  signifies the state vector of (1),  is the control input, and  and  are the
named  control  interval  and  rest  interval,  respectively.  In  addition,  and  are  unknown  constant
matrices. The initial condition of system (1) is given by .
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limk→∞ ∥x(k)∥ = 0
The main objective of this study is to develop data-based control schemes such that system (1) realizes asymp-

totic stabilization, i.e., , for any initial condition.
A B

A B

Remark 1: In this paper, the structure of system model (1) is known but the parameter matrices  and  are
assumed to be unknown. Hence, the presented system model is different from those presented in [16–19]. Notice that,
when the  system parameter  matrices  and  in  system (1)  are  unknown,  the  analysis  approaches  in  [16–19]  are
inapplicable. It is well known that the process of identification parameter matrices is time-consuming, difficult, and
even  unattainable.  Consequently,  how to  derive  the  stabilization  criteria  for  system (1)  is  our  main  work  by  using
only the collected input-state data.

2.3. Data-Based System Representation

k ∈ K2n

To accomplish the control objective, a data-based representation of system (1) will be established in this sub-
section. Some imperative assumptions are presented, an important Lemma is given, and the input-state data is used to
represent the closed-loop system (1a) for .

(A,B)Assumption 1: The matrix pair  in system (1) is stabilizable.
{x(ϵ)}Lϵ=0 {u(ϵ)}Lϵ=0

ϵ ∈ NL

Assume that the state data  and control input data  of system (1) are available at discrete time
instants . These measurements can be arranged in a stacked format to form the following data matrices:

X0,L := (x(0), x(1), · · · , x(L−1)) ∈ Rn×L,
X1,L := (x(1), x(2), · · · , x(L)) ∈ Rn×L,
U0,L := (u(0),u(1), · · · ,u(L−1)) ∈ Rm×L,

(2)

Lwhere  is used to emphasize the quantity of sample data collected from the system during the experiment.
X0,L,X1,L U0,L

Π =

Å
U0,L

X0,L

ãAssumption  2: The  state  and  input  sequences  and  are  available  off-line,  and  the  matrix

 has full row rank, i.e.

rank(Π) = n+m (3)

L ∈ Nwhere  denotes the number of recorded data.

U0,L n+1

Remark 2: The rank condition (3) plays an important role in the following research, requiring that the recorded
data is sufficiently rich. In fact, Assumption 2 can be easily verified for the collected data set. As mentioned in [42],
Assumption 2 holds when  is persistently excited of order .

H ∈ RL×2n ΠH = diag(K, I).Lemma  1: Suppose  that  Assumption  2  is  true  and  there  is  a  matrix  satisfying 
Then, the data representation of system (1a) is

x(k+1) = X1,LH
Å

x(k)
x(k)

ã
. (4)

u(k)Furthermore, the control input  is designed as

u(k) = U0,LH
(
I,0

)T
x(k).

Proof: Apparently, system (1a) can be rewritten as

x(k+1) =
(
B,A

)Åu(k)
x(k)

ã
=
(
B,A

)
diag(K, I)

Å
x(k)
x(k)

ã
. (5)

H ∈ RL×2nFollowing the Rouché-Capelli theorem [43] and Assumption 2, there exists a matrix  such that

diag(K, I) =
Å

U0,L

X0,L

ã
H = ΠH. (6)

From system (1a), one has

X1,L =
(
B,A

)
Π. (7)

From (7), (5) can be rewritten as

x(k+1) =
(
B,A

)
ΠH
Å

x(k)
x(k)

ã
= X1,LH

Å
x(k)
x(k)

ã
. (8)

u(k)Correspondingly, it can be derived from (6) that the control input  can be expressed as

u(k) = Kx(k) = U0,LH(I,0)T x(k).
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The proof is finished.
U0,L X0,L

L≥n+m

K

Remark  3: Lemma 1  indicates  that  the  data  and  satisfy  the  rank  condition  (3)  and  contain  all  the
information of system (1). The rank condition also means that the minimum data length is . Lemma 1 not
only provides a pure data-based representation of the closed-loop system (1), but also gives an analytic expression of
the control gain  by using the input-state data.

N = NT ,D = DT , MLemma 2 (Schur Complement [44]): For proper dimension matrices  and , the linear matrix
inequality Å

N M
MT D

ã
< 0,

is equivalent to any one of the following two conditions:

(a) D < 0, N −MD−1MT < 0,
(b) N < 0, D−MT N−1M < 0.

3. Main Outcomes

This section proposes a data-driven approach to solve the stabilization problem of the ICDTS (1) with unknown
parameter matrices. By using the result of Lemma 1, Theorem 1 presents the data-based stabilization conditions for
ICDTS (1). In addition, considering the cost performance, the data-driven GCC is proposed in Theorem 2. Note that
the  IC  schemes  used  in  Theorems  1–2  remove  some  constraint  conditions  on  the  relationships  among  the  control
width, rest width, and convergence rate.

3.1. Data-Based Stabilization Criteria for ICDTS (1)
α̃ = 1−α β̃ = 1+β Φ11 = Q1XT

0,L Φ12 = Q1XT
1,L Φ13 = Q2XT

1,L w2n = k2n+1− k2n

w2n+1 = k2n+2− k2n+1 K2n K2n+1

Denote , , ,  and .  Moreover, 
and  are the widths of  and , respectively.

The following result is given about the data-based stabilization conditions of the ICDTS (1).
0 < α < 1 0 < β

Q1 ∈ Rn×L Q2 ∈ Rn×L
Theorem 1: Suppose that Assumptions 1–2 hold. For given constants  and , the ICDTS (1) is

said to achieve asymptotic stabilization if there exist matrices  and  such that

Φ =

Å
−α̃Φ11 ΦT

12+Φ
T
13

∗ −Φ11

ã
< 0, (9)

Φ̂ =

Å
−β̃Φ11 ΦT

12
∗ −Φ11

ã
< 0, (10)

γn =
w2n+1 ln β̃
w2n ln α̃−1

< 1,n ∈ N, (11)

U0,LQT
1 = 0m×n, (12)

X0,LQT
2 = 0n×n. (13)

KIn addition, the control gain  is designed as

K = U0,LQT
2Φ
−1
11 . (14)

Proof: Select the following Lyapunov function candidate

V(k) = xT (k)Px(k), (15)

P > 0where .
∆V(k) = V(k+1)−V(k) k ∈ K2nDefine . For , one can obtain

∆V(k) =x(k+1)T Px(k+1)− x(k)T Px(k)

=xT (k)
[
(A+BK)T P(A+BK)− α̃P

]
x(k)−αV(k). (16)

According to Lemma 1, the data representation of parameter matrices can be represented as

A =X1,LH
(
0, I

)T
, (17)

BK =X1,LH
(
I,0

)T
, (18)
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subject to

U0,LH
(
0, I

)T
= 0m×n, (19)

X0,LH
(
I,0

)T
= 0n×n. (20)

Q1 = P̃
(
0, I

)
HT ,Q2 = P̃

(
I,0

)
HT P̃ = P−1Denote , and . Then, from equations (19)-(20), it  is easy to obtain

the following constraint conditions:

U0,LH
(
0, I

)T
P̃ = U0,LQT

1 = 0m×n,

X0,LH
(
I,0

)T
P̃ = X0,LQT

2 = 0n×n.

In addition, from (17) and (18), (16) can be rewritten as

∆V(k) =xT (k)
ïÄ

X1,LH
(
0, I

)T
+X1,LH

(
I,0

)TäT
×P×

Ä
X1,LH

(
0, I

)T
+X1,LH

(
I,0

)Tä− α̃P
ò

x(k)−αV(k)

=xT (k)
ï(

X1,LQT
1 P+X1,LQT

2 P
)T ×P×

(
X1,LQT

1 P+X1,LQT
2 P

)
− α̃P

ò
x(k)−αV(k)

=xT (k)P
[
(Φ12+Φ13)T P(Φ12+Φ13)− α̃P̃

]
Px(k)−αV(k), (21)

Φ12 Φ13where the definitions of  and  are presented above Theorem 1.
I =

(
0, I

)
HT XT

0,LNote that from (7), one has . Hence, we can obtain

P̃ = P̃
(
0, I

)
HT XT

0,L = Q1XT
0,L = Φ11. (22)

Combining (22) and (21), we have

∆V(k) =xT (k)P
[
(Φ12+Φ13)TΦ−1

11 (Φ12+Φ13)

− α̃Φ11
]
Px(k)−αV(k). (23)

Then, by using Lemma 2, condition (9) is equivalent to

(Φ12+Φ13)TΦ−1
11 (Φ12+Φ13)− α̃Φ11 < 0.

k ∈ K2n+1Therefore, for , we have

∆V(k)≤−αV(k). (24)

k ∈ K2n+1Similarly, for , it is easy to obtain from (15), (17) and (22) that

∆V(k) =xT (k)[AT PA− β̃P]x(k)+βV(k)

=xT (k)P[ΦT
12Φ

−1
11Φ12− β̃Φ11]Px(k)

+βV(k). (25)

Furthermore, Lemma 2 and condition (10) imply

ΦT
12Φ

−1
11Φ12− β̃Φ11 < 0.

k ∈ K2n+1Thus, for , we have

∆V(k)≤βV(k). (26)

V(k)
k ∈ K2n

Next, we study the evolution of  in view of condition (11) and inequalities (24) and (26). By induction, for
, we have

V(k)≤α̃k−k2n V(k2n)

≤α̃k−k2n β̃V(k2n−1)
...

≤V(0)α̃k−k2n+
∑n−1

j=0
w2 j β̃

∑n−1

j=0
w2 j+1

≤V(0)e(k−k2n) ln α̃e
∑n−1

j=0
w2 j ln α̃e

∑n−1

j=0
w2 j+1 ln β̃

=V(0)e(k−k2n) ln α̃eln α̃
∑n−1

j=0
w2 j(1− 1

γ j
)
.

(27)
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k ∈ K2n+1It follows from  that

V(k)≤β̃k−k2n+1 V(k2n+1)

≤α̃β̃k−k2n+1 V(k2n+1−1)
...

≤V(0)α̃
∑n

j=0
w2 j β̃

k−k2 j+1+
∑n−1

j=0
w2 j+1

≤V(0)e(k−k2 j+1) ln β̃eln α̃
∑n

j=0
w2 j eln β̃

∑n−1

j=0
w2 j+1

=V(0)eln α̃
∑n

j=0
w2 j(1− 1

γ j
)
.

(28)

k > k2n n∗ ∈ N+ k ∈ [k2n∗ ,k2n∗+1)∪ [k2n∗+1,k2n∗+2) k→ +∞∑k−1
j=0w2 j→ +∞

∑k
j=0w2 j→ +∞ eln α̃

∑n−1

j=0
w2 j(1− 1

γi
)→ 0

eln α̃
∑n

j=0
w2 j(1− 1

γi
)→ 0 limk→∞V(k) = 0 limk→∞ ||x(k)|| = 0

Obviously,  for  any ,  there  exists  such  that .  When ,
one has , and . It follows from (11), (15) and (16) that  and

. As a result, it is concluded that  which implies . This com-
pletes the proof.

A BRemark 4: Without using the information of matrices  and ,  Theorem 1 derives the data-dependent stabi-
lization criterion for ICDTSs. This is fundamentally different from the results presented in [16–20]. Compared with
the existing data-driven results based on continuous control in [36–41], the IC scheme used in Theorem 1 has many
merits such as the improved robustness, low control cost, and convenient operation in practice.

w2n w2n+1

α β

A B

w2n w2n+1

w2n w2n+1

w2n ln α̃−1 w2n+1 β

Remark 5: A novel relationship (11), among the control interval , rest interval  and convergence rate
 and , is presented to enhance the application range of the IC scheme. Recently, [16–20] have focused on the sta-

bilization or synchronization of DTSs with known parameter matrices  and  via the IC scheme. Note that there are
some harsh restrictions on the IC scheme. For instance, the upper bound of the rest width and the lower bound of the
control width have been proposed in advance in [16, 17]. Based on the concept of the average dwell time, authors in
[18–20] have used the average activation time ratio and the average activation period to astrict  the control  interval

 and  the  rest  interval .  The  distribution  of  control  intervals  over  the  entire  time  domain  is  required  in
advance,  which reduces  the  flexibility  of  practical  applications.  In  Theorem 1,  as  long as  condition (11)  holds,  the
widths of the control interval  and the rest interval  can be adjusted flexibly according to specific require-
ments. For example, if the value  is fixed, the rest width  can be increased as the value of  increases.
Moreover, the result of Theorem 1 can be applied to DTSs under both periodic and aperiodic IC schemes.

w2n+1 = 0If , the ICDTS (1) becomes a DTS with a continuous control scheme, i.e.,®
x(k+1) = Ax(k)+BKx(k),
x(0) = x0 ∈ Rn.

(29)

According to Theorem 1, the following corollary can be derived.
α Q1 ∈ Rn×L

Q2 ∈ Rn×L

u(k) = Kx(k)

Corollary 1: Suppose that Assumptions 1–2 hold. For a positive constant , if there exist matrices 
and  such that  (9),  (12)  and (13)  hold.  Then,  system (29)  is  asymptotically  stable  with  the  control  input

. Besides, the control gain can be obtained as

K = U0,LQT
2Φ
−1
11 .

3.2. Data-Driven GCC

This subsection develops a GCC based on the data-driven approach for the ICDTS (1). Inspired by [24, 25], a
new infinite-horizon cost function for intermittently controlled system is designed as

J =
∞∑

n=0

[
k2n+1−1∑
k=k2n

Ä
x(k)T S x(k)+u(k)T Ru(k)

ä
+

k2n+2−1∑
k=k2n+1

x(k)T S x(k)

]
, (30)

S R u(k)where  and  are given positive definite weighted matrices. Then, our goal is to design the control input  such
that system (1) can achieve the following GCIC.

u(k)
J∗

J < J∗ J∗

Definition 1: System (1) is said to achieve GCIC if there exist an intermittent control law  and a positive
constant  such that system (1) is asymptotically stable, and the corresponding index of the guaranteed cost function
(30) satisfies , where  is called the guaranteed cost index.

0 < α < 1 0 < β
0 < R ∈ Rn×n 0 < S ∈ Rm×m J∗ Q1 ∈ Rn×L

Theorem  2: Suppose  that  Assumptions  1–2  hold.  For  given  constants  and ,  and  weighted
matrices  and ,  if  there  exist  a  positive  constant ,  and  matrices  and
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Q2 ∈ Rn×L  such that conditions (11)–(13) and inequalities

Φ̃ =

Ü
−α̃Φ11 ΦT

12+Φ
T
13 Q2UT

0,LR Φ11S
∗ −Φ11 0 0
∗ ∗ −R 0
∗ ∗ 0 −S

ê
< 0, (31)

Ψ̃ =

Ñ
−β̃Φ11 Q1XT

1,L Q1XT
0,LS

∗ −Φ11 0
∗ 0 −S

é
< 0, (32)Å

−J∗ x(k0)T

x(k0) −Q1XT
0,L

ã
< 0, (33)

hold. Then, the following statements hold.
u(k) = U0,LQT

2Φ
−1
11 x(k)1) System (1) is asymptotically stable with the control input .

J < J∗2) The cost function defined in (30) satisfies  which is a guaranteed cost value of system (1).
Proof: Note that, it is easy to check that conditions (31) and (32) imply conditions (9) and (10) given in Theo-

rem 1.  Therefore,  based on Theorem 1,  conditions (11) and (31)–(32) ensure that  the ICDTS (1)  is  asymptotically
stable.

JNext, we find the the upper bound of the guaranteed cost function .
Z(x(k),u(k)) = x(k)T S x(k)+u(k)T Ru(k)

k ∈ K2n

Denote ,  and  choose  the  same  Lyapunov  function  (15).  Then,  it
appears that, for ,

∆V(k) =xT (k+1)Px(k+1)− α̃xT (k)Px(k)
+ x(k)T S x(k)+u(k)T Ru(k)− x(k)T S x(k)
−u(k)T Ru(k)−αxT (k)Px(k)
=xT (k)[(A+BK)T P(A+BK)− α̃P

+S +KT RK]x(k)− xT (k)[αP+S

+KT RK]x(k). (34)

Based on the analysis in Theorem 1, equation (34) can be rewritten as

∆V(k) =xT (k)P[(Φ12+Φ13)TΦ−1
11 (Φ12+Φ13)− α̃Φ11

+Φ11SΦ11+Q2UT
0,LRU0,LQT

2 ]Px(k)
− xT (k)[αP+S +KT RK]x(k). (35)

By Lemma 2, condition (31) implies

(Φ12+Φ13)TΦ−1
11 (Φ12+Φ13)− α̃Φ11+Φ11SΦ11+Q2UT

0,LRU0,LQT
2 < 0. (36)

Hence, inequalities (35) and (36) indicate

Z(x(k),u(k))≤−∆V(k)−αV(k) for k ∈ K2n. (37)

k ∈ K2n+1When , one has

∆V(k) =xT (k)[AT PA− β̃P+S ]x(k)
+ xT (k)[βP−S ]x(k)

=xT (k)P[Φ12Φ
−1
11Φ12+Φ11SΦ11

− β̃Φ11]x(k)+ xT (k)[βP−S ]x(k). (38)

Therefore, it can be concluded from Lemma 2, condition (32) and inequality (38) that

Z(x(k),0)≤−∆V(k)+βV(k), for k ∈ K2n+1. (39)

k ∈ K2nFrom condition (11), and inequalities (37) and (39), we have the following equations for :
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k∑
j=0

Z(x( j),u( j))

=

k1−1∑
j=0

Z(x( j),u( j))+
k2−1∑
j=k1

Z(x( j),0)+ . . .

+

k2n−1∑
j=k2n−1

Z(x( j),0)+
k∑

j=k2n

Z(x( j),u( j))

≤−
k∑

j=0

∆V( j)−
k1−1∑
j=0

αV( j)+
k2−1∑
j=k1

βV(i)

+ . . .+

k2n−1∑
j=k2n−1

βV( j)−
k∑

j=k2n

αV( j)

≤α̃
n−1∑
j=0

î(
β̃w2 j+1 − 1

α̃w2 j

)
V(k2 j+1−1)

ó
−

k∑
j=0

∆V( j)

≤−
k∑

j=0

∆V( j).

(40)

k ∈ K2n+1Similarly, for , one has
k∑

j=0

Z(x( j),u( j))

=

k1−1∑
j=0

Z(x( j),u( j))+
k2∑

i=k1

Z(x( j),0)+ . . .

+

k2n+1−1∑
j=k2n

Z(x( j),u( j))+
k∑

j=k2n+1

Z(x( j),0)

≤−
k∑

j=0

∆V( j)−
k1−1∑
j=0

αV( j)+
k2−1∑
j=k1

βV( j)

+ . . .−
k2n+1−1∑

j=k2n

αV( j)+
k∑

i=k2n+1

βV( j)

≤α̃
n∑

i=0

î(
βw2 j+1 − 1

α̃w2 j

)
V(k2 j+1−1)

ó
−

k∑
j=0

∆V( j)

≤−
k∑

j=0

∆V( j).

(41)

k→ +∞Letting . it can be obtained from both (40) and (41) that

J =
∞∑
j=0

Z(x( j),u( j))≤V(0)− lim
k→+∞

V(k)≤V(0). (42)

Then, according to Lemma 2 and condition (33), inequality (42) further means

J≤V(0) < J∗. (43)

The proof is complete.

w2n w2n+1

Remark 6: Theorem 2 presents the first investigation on the GCC for the ICDTS (1) with unknown parameter
matrices. Accordingly, a novel cost function (30) is designed, and the sufficient data-based stabilization conditions are
obtained. Although the GCIC for continuous systems has been considered in [25–27], such results have been strictly
limited to the model-dependent case with severe restrictions of the control interval  and the rest interval .
Theorem 2 directly utilizes the collected input-state data to derive the stabilization criteria, avoiding the intricate pro-
cess of parameter identification. Hence, Theorem 2 extends the results of [25–27].
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J < J∗ J∗

J∗

J∗

Remark 7: The data-driven GCC problem of the ICDTS (1) has been addressed in Theorem 2, i.e. system (1)
can realize stabilization when the cost function satisfies . Generally, the minimal  means that the system has
the optimal control cost, but solving the inequalities in Theorem 2 can only lead to a feasible solution of . In order
to obtain the minimum value of , one can solve Theorem 2 according to Algorithm 1.
 
 

J∗1 Algorithm 1 Calculate the minimal guaranteed cost 
α β X0,L U0,L S RInput: Constants , . Matrices , , , .

J∗Output: The minimal GCC .
Ju Jl 0 < Jl < Ju ϵ

Jo =
(Ju+Jl)

2

1: Given the upper limit value  and the lower limit value  of the cost function where , given the accuracy coefficient 
which is a small enough positive constant, set .

∥Ju − Jl∥ > ϵ2: while  do
3: 　if conditions(11)–(13) and (31)–(33) have feasible solutions then

Ju = Jo4: 　　 ;
5: 　else

Jl = Jo6: 　　 ;
7: 　end if

∥Ju − Jl∥ < ϵ8: 　if  then
J∗ = Jo9: 　　 ;
break10: 　　

11: 　end if
12: end while

J∗13: Return ;
 

For the DTS (29) with a continuous control scheme, the similar GCC results can directly be obtained.
Reconstruct the infinite-horizon cost function as

J =
∞∑

k=0

[
x(k)T S x(k)+u(k)T Ru(k)

]
, (44)

S Rwhere  and  are defined in (30). Then, the following corollary can be derived from Corollary 1 and Theorem 2.
α

Q1 ∈ Rn×L Q2 ∈ Rn×L J∗
Corollary  2: Suppose  that  Assumptions  1–2  hold.  For  given  positive  constant ,  if  there  exist  matrices

,  and the performance index  such that conditions (12), (13), (31) and (33) hold. Then, the
following statements hold.

u(k) = U0,LQT
2Φ
−1
11 x(k)1) System (29) is asymptotically stable with the control input .

J < J∗2) The cost function defined in (44) satisfies .

4. Examples and Simulations

Two  numerical  examples  are  given  in  this  section  to  demonstrate  the  validity  of  the  proposed  theoretical
method.

Consider a batch reactor system with IC [45].  By discretizing the system with a sampling period of 0.1s,  we
obtain the following ICDTS [37]: ®

x(k+1) = Ax(k)+Bu(k),k ∈ K2n,

x(k+1) = Ax(k),k ∈ K2n+1,

A=

Ü
1.178 0.001 0.511 −0.403
−0.051 0.611 −0.011 0.061
0.076 0.335 0.560 0.382

0 0.335 0.089 0.849

ê
, B=

Ü
0.004 −0.087
0.467 0.001
0.213 −0.235
0.213 −0.016

ê
, x(k) = (x1(k), x2(k), x3(k), x4(k))T

u(k) = (u1(k),u2(k))T

L = 12

where   ,

.  The  data  is  collected  by  running  an  experiment  with  random initial  values  and  the  random
input sequence is generated by utilizing the MATLAB command rand. The data of length  is collected which
is sufficient for Assumption 2.

xi(t)(i = 1,2,3,4)
α = 0.6 β = 0.5 ΞC = [18n,18n+2)∪ [18n+

6,18n+7)∪ [18n+9,18n+11)∪ [18n+15,18n+16)∪ · · · ΞU = N/ΞC

mini∈N{γi} =
0.9162
0.8109

> 1

Example 1: This example is given to verify the effectiveness of Theorem 1. When there is no control input, the
trajectories of the error system  are depicted in Figure 1. It is indicated that the DTs (1) is unstable
without  control.  Set  and .  The  control  intervals  are  selected  as 

, and the uncontrolled intervals are . For the

above  intervals,  it  is  easy  to  find  that ,  which  means  that  condition  (11)  is  satisfied.  By
using CVX to solve conditions (9)–(13) in Theorem 3.1, the feedback gain is obtained as
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K =
Å

0.3994 −0.7039 0.0810 −0.8935
2.4853 0.0185 1.7976 −1.3345

ã
.

 
 

1050 15

t

20 25
−20

−15

−10
x
i(
k
),

 i
=

1
, 
2
, 
3
, 
4

−5

0

5

10

15

20

x1(k)

x2(k)

x3(k)

x4(k)

xi(k) i = 1,2,3,4Figure 1.  Trajectory of the state  without controller, .
 

The control gain based on the accurate system parameters is computed to compare with Theorem 1. According
to the model-based stabilization method, the controller gain is obtained as follows:

KM =

Å
0.3671 −0.6930 0.0476 −0.8765
2.2873 0.0035 1.6407 −1.2372

ã
.

x(k)
K x(k)

KM

ξ =
work interval

work interval + rest interval

We simulate the stabilization of system (1) with the above two gains. The trajectories of the state  under the
data-based  controller  is  presented  by  the  solid  line  in Figure  2,  and  the  trajectories  of  the  state  under  the
model-based controller  is also displayed in this figure by the dotted line. From Figure 2, one can conclude that,
under the same circumstance, both controllers can achieve the control purpose. Based on Figure 1 and Figure 2, the
effectiveness of the controller designed in this paper is clearly demonstrated. In addition, to further highlight the supe-
riority  of  the  IC  in  this  paper,  the  concept  of  the  control  ratio  is  introduced,  which  is  defined  as

. Table 1 shows the control ratios of this paper and other references, and it is clear
from the table that the control ratio in this paper is significantly smaller than those in other references.
 
 

1050 15

k

20 25

1.5

1.0

0.5

0

−0.5

−1.0

−1.5

x
i(
k
),

 i
=

1
, 
2
, 
3
, 
4

x1(k)

x2(k)

x3(k)

x4(k)

Control interval

xi(k) xi(k)

K xi(k) KM i = 1,2,3,4

Figure 2.  Trajectory of the state  in Example 1: (a) solid line shows the trajectories of state  under controller
 and (b) dotted line shows the trajectories of state  under controller , .

 
 

Table 1    The control rate for different methods
Reference in this paper [13] [18] [16] [19]

control ratio 33% 50% 70% 66% 83%
 

S = I4 R = 0.4I4

J∗ = 300

Example 2: In this example, the GCC under the IC strategy is considered. The matrices in the cost function (30)
are chosen to be  and ,  and the rest  parameters  are  the same as that  in  Example 1.  We first  solve
(31)–(33) according to Algorithm 1, and derive the minimum guaranteed cost  and the control gain

K =
Å

0.3460 −0.6791 0.0033 −0.9355
2.4187 0.0163 1.6288 −1.3295

ã
.
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x(t)
K J

J∗

Figure 3 depicts the state curves of , which shows system (1) is asymptotically stable with the control gain
. Moreover, the curve of the cost function is described in Figure 4, from which one can see that the cost function 

is smaller than . So, the effectiveness of Theorem 2 is confirmed.
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xi(k) K, i = 1,2,3,4Figure 3.  Trajectory of the state  with controller .
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Performance index J*

J J∗Figure 4.  The solid line shows the trajectory of the cost function , the dotted line shows the value of .
 

5. Conclusions

In  this  paper,  the  GCC of  ICDTSs with  unknown parameter  matrices  has  been investigated.  The  data-driven
method has been adopted without  the process of  model  identification.  The IC scheme with relaxed restrictions has
been designed utilizing the input-state  data.  The sufficient  data-dependent  stability  conditions have been derived to
ensure the stabilization of the system. Moreover, based on the novel cost function constructed for ICDTSs, the data-
driven GCC has been explored. Finally, the numerical simulations have verified the validity of the theoretical analy-
sis.

In  general,  finite-time control  drives  system states  into  predetermined  orbits  within  a  finite  time,  thus  having
more advantages over asymptotic control in terms of time optimization. Consequently, our future work will focus on
achieving data-driven finite-time stabilization of systems by using intermittent control.
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