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Abstract: A simultaneous localization and mapping (SLAM) system is presented in this paper based on
visual-inertial fusion to solve the pose estimation drift problem caused by weak texture environments or
rapid robot movements. The camera and inertial measurement unit (IMU) is initialized through IMU pre-
integration and visual front-end processing, and a tightly coupled residual function model is employed in
the  back-end  to  eliminate  accumulated  errors.  To  realize  the  real-time  pose  estimation  in  the  complex
loop scene, the sliding window optimization method based on the marginalization strategy is adopted to
improve the optimization efficiency of the system, and the loop detection algorithm based on the bag-of-
words  model  is  exploited  to  solve  the  cumulative  error  problem generated  during  long-term operation.
Furthermore, because of the interference (of complex scenes with dynamic targets) in system modeling
and localization of the environment, this paper introduces a deep-learning semantic segmentation model
to  segment  and  eliminate  dynamic  targets.  The  system  performance  test  is  carried  out  based  on  the
EuRoC  dataset  and  the  KITTI  dataset.  Finally,  the  experimental  results  illustrate  that  the  proposed
method has improved system robustness and localization accuracy compared with the pure vision algo-
rithm and the visual-inertial fusion algorithm without removing dynamic targets.
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1. Introduction

The  simultaneous  localization  and  mapping  (SLAM)  is  a  critical  technology  to  achieve  full  automation  of
autonomous robots,  and  is  widely  employed  in  the  unmanned  driving,  logistics  distribution,  environmental  explo-
ration,  and  other  fields  [1].  The  SLAM refers  to  the  process  in  which  a  mobile  robot  uses  its  multiple  sensors  to
determine its pose and surrounding environment [2]. Davison A. J., et al. first proposed the monocular vision SLAM
system framework (MonoSLAM) [3]. Note that the monocular vision system is constrained by external information
in terms of spatial scale acquisition, and there is a large error in the depth information estimated from the geometric
perspective.  The  BAD-SLAM  proposed  in  [4]  applied  the  RGB-D  camera  to  determine  the  distance  information
between the target and itself. Note that the resulting performance is greatly affected by the light and the cost is high.
Note that stereo cameras only need to calculate scale information by stereo matching binocular image information,
which  solves  the  problem of  scale  uncertainty  of  monocular  cameras,  but  the  cost  is  relatively  low [5].  Therefore,
stereo  cameras  are  adopted  to  acquire  image  information  in  this  paper,  and  the  depth  information  is  calculated  by
stereo matching.

Currently, stereo localization methods mainly include the optical flow methods and feature-based methods. The
optical flow methods are based on the assumption of gray invariant [6], and are susceptible to interferences from the
ambient  light  intensity.  The feature-based methods are  mainly divided into  the point  feature  methods,  edge feature
methods, and block feature methods. Among them, the point feature methods show greater advantages in recognition
and noise resistance than the other two methods [7]. Mei X., et al. [8] proposed a feature extraction method combin-
ing point features and line features to reduce the impact of weak texture environments on single-point features. Note
that the introduction of line features makes subsequent feature matching difficult and time-consuming, and the real-
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time performance of  the system drops significantly.  Considering the repeatability  and uniqueness of  feature points,
the  SIFT algorithms  [9],  SURF algorithms  [10],  FAST algorithms  [11],  and  ORB algorithms  [12] have  been  pro-
posed successively. Taking into account the illumination, scale, and rotation invariance of the image, the ORB algo-
rithm is adopted in this paper. Additionally, the sole use of the camera sensor will lead to problems such as inaccu-
rate depth information calculation and weak generalization ability under different lighting conditions. Therefore, the
visual sensors and inertial measurement unit (IMU) are combined in this paper, and the high-frequency pose output
characteristics of the IMU are used to ensure long-term tracking in complex environments and harsh conditions.

On the  other  hand,  most  existing open-source  solutions  assume that  the  working environment  of  the  robot  is
static. Due to the existence of dynamic objects in real scenarios, the relative motion between the system and dynamic
objects will lead to inaccurate localization information, redundancy and serious deviations in the construction of envi-
ronmental maps [13]. So far, most object removal methods have solved the camera's motion model [14]. Note that
existing  SLAM  system  frameworks  (presented  under  the  assumption  of  a  static  environment)  are  disturbed  when
using feature or optical flow information to restore the motion posture in a dynamic environment. Even if the mis-
matched pairs are eliminated by the RANSAC algorithm, the estimation accuracy of motion information is still diffi-
cult to guarantee [15]. Accordingly, dynamic objects in the environment can be better eliminated by directly utilizing
semantic information or multi-view geometric constraints to discriminate dynamic regions in an image.

Inspired  by  the  above  observations,  this  paper  adopts  the  ORB  feature  extraction  algorithm  which  has  good
robustness and real-time performance for complex scenes with weak textures, illumination, and large viewing angle
changes. The main contributions of this paper are as follows.

1) Based on the ORB-SLAM algorithm framework [16], the IMU data is fused and combined with the visual
front-end, and the sliding window optimization algorithm based on the marginalization strategy is introduced to build
a tightly coupled model of the residual function to eliminate the cumulative errors.

2) Aiming at solving the problem of cumulative errors in the incremental map construction process under large-
scale and complex loop-closing scenarios,  the loop-closing detection and global optimization strategies are adopted
based on the bag-of-words model, which effectively reduces the cumulative errors of the system in complex scenar-
ios, and greatly improves the accuracy and robustness.

3)  Since  the  static  assumption principle  is  difficult  to  be  satisfied  in  the  actual  scene of  dynamic  objects,  the
DeepLabV3 [17] semantic segmentation network is  adopted.  Furthermore,  semantic information is  used to identify
and eliminate  dynamic regions in  images,  which effectively improves the accuracy of  system positioning and map
construction.

2. Overall System Framework Design

The localization and mapping system proposed in this paper is shown in Figure 1. This system is based on multi-
modal information fusion and deep learning dynamic target removal, and mainly includes a front-end data processing
module, an initialization module, a visual-inertial odometer module, and a loop detection and optimization module.
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Figure 1.  Overall structure diagram of the system.
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The front-end data processing module is mainly applied to front-end data processing of stereo cameras, includ-
ing  feature  extraction,  tracking,  prior  semantic  segmentation,  information  processing  and  dynamic  target  removal.
The oriented FAST and rotated BRIEF (ORB) feature extraction and fast approximate nearest neighbor search library
(FLANN)  methods  [18]  are  used  for  feature  extraction  and  tracking.  The  semantic  segmentation  dynamic  target
removal  method  adopts  the  DeepLabV3 semantic  segmentation  method  based  on  the  ResNET [19] backbone  net-
work, and uses the ADE20K pre-training model to perform dynamic target removal of semantic information on the
KITTI public dataset. To prevent the redundant propagation of IMU state variables, the IMU preintegration method is
used to improve the real-time performance of the system, and the image frame and the IMU frame are aligned for the
case where the modal information measurement output frequencies are inconsistent.

The initialization module reserves a few frames in the sliding window, performs feature correspondence match-
ing in the latest frame and historical frames, and carries out triangulation between any other frames after meeting the
feature tracking number threshold and the disparity threshold. Furthermore, the perspective-n-pint (PnP) method pro-
posed in [20] is employed to estimate the pose-motion information of the frame within the selected window.

In  the  visual-inertial  odometry  [21]  module,  since  the  back-end  nonlinear  high-dimensional  optimization
method cannot optimize the state variables at all moments, the constant change of the camera's perspective will make
the earlier image frames lose the information of the current tracking landmarks. Therefore, this paper selects the most
recent image frame and IMU frame as the optimization window [22] for pose estimation and optimization, discards
the oldest frames in the window, and adds new keyframes to nonlinear optimization. Moreover, since there are still
constraints  in  the  frames  (that  need  to  be  discarded)  and  other  variables  in  the  window,  the  Schur  complement
method is used to marginalize the historical frame state variables [23], and a visual-inertial tightly coupled residual
function model is constructed. Finally, the graph optimization theory and the bundle adjustment (BA) algorithm are
used to minimize the above residual function model to reduce the cumulative errors.

The loopback detection optimization module is used to realize the real-time operation of the system, but it can-
not optimize all state variable information. As the system runs for a long time, the cumulative error of pose calcula-
tion still exists. To this end, the DBoW3 bag-of-words model is selected based on feature information for loop clo-
sure detection.  By matching information between new keyframes and historical  frames,  we can determine whether
there is a loop. Then, loop constraints are added between historical frames to update the residual optimization func-
tion model for global pose optimization.

3. Methods

3.1. Feature Extraction and Matching
The first step is the front-end data processing process. The stereo camera uses the ORB feature extraction and

the FLANN fast nearest neighbor matching method. The specific process of front-end feature extraction and match-
ing is shown in Figure 2, which includes the following steps.

1) Input grayscale image information.
2) Determine a circle with a radius of 3 pixels with any pixel point P as the center, as shown in Figure 3. Pass-

ing through 16 pixel points around the central pixel point P, the gray value I of the central pixel point P is calculated.
3) Set the threshold t. If there are 12 consecutive pixels among the 16 pixels that meet the threshold condition,

then point P is recorded as a candidate feature point; otherwise, the pixel is filtered out. Continue to perform thresh-
old screening of other pixel gray values.

4) Repeat steps 2 and 3 for each pixel.
5) To avoid the concentration of corner points, the non-maximum suppression method is used to calculate the

score V of each candidate point, which can be determined by

V =max

(∑
x∈S b

∣∣In− Ip

∣∣− t,
∑
x∈S l

∣∣In− Ip

∣∣− t

)
, (1)

In S b

Ip+ t S l Ip− t
where  is the value of the pixel points on the circumference,  is the set of pixel points whose brightness value is
greater than , and  is the set of pixel points whose gray value is smaller than . The adjacent candidate
feature points with larger scores are retained as feature points, and the rest points are discarded.

6) Construct a Gaussian pyramid to achieve scale invariance of image features. The original image is scaled by
the scale factor, and the pixel value of each layer of the image is calculated as

I′ = Ip
/

1.2k (k = 1,2, · · ·8) , (2)
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where k is the number of pyramid layers, and 1.2 is the scaling factor s. According to the scaling factor, an 8-layer
image pyramid is constructed to obtain the images at different resolutions, so that the extracted feature points have
scale invariance.
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Figure 2.  Flowchart of front-end feature extraction and tracking process.
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Figure 3.  Schematic diagram of FAST corner pixels.
 

7)  To  add  the  rotation  invariance  of  the  key  points,  the  gray-scale  centroid  method  is  used  to  construct  the
direction vector, and the moment of the image block is defined as

mpq =
∑
x,y∈B

xpypI (x,y), p,q = {0,1} . (3)

Then, the centroid of the image block is determined through the moment of the image block as

C =
Å

m10

m00
,
m01

m00

ã
. (4)
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Finally,  connect  the  geometric  center O of  the  image  with  the  centroid C,  and  the  feature  direction  can  be
obtained as

θ = tan−1
Å

m01

m10

ã
. (5)

After  extracting  oFAST  corner  points,  the  rBRIEF  descriptor  of  each  feature  point  is  calculated,  and  the
approximate nearest neighbor matching algorithm (integrated into the FLANN open-source library) is used for fea-
ture matching. Finally, the random sample consensus (RANSAC) algorithm is used to eliminate mismatched pairs.

The comparative experiment results of the brute force matching method and the FLANN matching algorithm
are shown in Figure 4 after ORB feature extraction. The images are selected from the machine hall 05 sequence pro-
vided by the public dataset EuRoC. From Figure 4, it can be seen that the performance of the feature extraction and
matching method used in this paper is better than that of the traditional brute force matching method.
  

(a)

(b)

Figure 4.  Illustration of  image feature extraction and matching results. (a) Feature matching results  using the brute-
force matching method. (b) Matching results using the FLANN algorithm.

 

3.2. Dynamic Object Removal
Take into account the existence of dynamic targets in the actual environment. First, the relative motion between

the dynamic target and the sensor will cause a relative deviation in translation and rotation based on the world coor-
dinate system. Second, the identified and extracted landmark information on dynamic targets will lead to redundant
map  information,  hence  reducing  the  accuracy  of  map  construction.  To  this  end,  the  DeepLabV3  deep  learning
semantic segmentation method is used based on the ResNET backbone network, and the ADE20K pre-trained model
is used to eliminate dynamic target information from the KITTI public data set.

The semantic segmentation method introduces multiple grids and improves the ASPP encoding structure which
has two parts: the cascade model and ASPP model. Also, the Atrous spatial pyramid pooling (ASPP) model (suitable
for multi-scale detection) is used in this work. The network architecture is shown in Figure 5. First, a deep residual
network (ResNET) is used as a feature extractor to extract high-level semantic features from input images. Then, the
ASPP model is applied, which consists of five parallel branches. Each branch includes a 1 × 1 convolutional layer
and three 3 × 3 dilated convolutional layers with different dilation rates so as to increase the receptive field.  Addi-
tionally, each dilation parameter is multiplied by the corresponding rate and multi-grid parameter. In the practical test,
no additional block layer structures are added to the ASPP model, and the multi-grid parameter is set to be (1, 2, 4).
Then, a global average pooling layer is used to obtain global information (followed by a 1 × 1 convolutional layer).
The downsampling rate of the feature layer relative to the input image is set to be 8, and multi-scale parameters are
set  to  be  {0.5,  0.75,  1.0,  1.25,  1.5,  1.75}  to  obtain  more  scales.  Then,  the  original  width  and  height  are  restored
through bilinear  interpolation.  Subsequently,  the  outputs  of  these  five  branches  are  concatenated  along the  channel
dimension. Finally, a 3 × 3 convolutional layer and a 1 × 1 convolutional layer are used for bilinear interpolation and
upsampling to restore the original image size.
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Figure 5.  The architecture of Deeplabv3 semantic segmentation based on the ResNET backbone network.
 

The original image and the segmentation image are shown in Figure 5, where the dataset selected in the figure
comes from the public data set KITTI 01 sequence. The steps to remove segmented dynamic objects are as follows.

1) Set the RGB information and semantic information corresponding to the dynamic objects.
2) Use the semantic segmentation image as the mask image, and apply the image mask during the feature point

extraction and matching processes.
3) Compare the pixel RGB values at the extracted feature points with the RGB values of the dynamic objects

(using a threshold). Determine and remove the feature points corresponding to the dynamic objects.
4) Set the inflation boundary threshold to address the boundary issue of dynamic object regions where feature

points may exist. If the number of feature points at the boundary exceeds 3, the boundary is inflated and the dynamic
object points are deleted.

5) Feature tracking and matching may cause certain dynamic object points to be re-tracked. In this case, repeat
Steps 2, 3, and 4 to perform secondary filtering of the dynamic object points.

3.3. IMU Preintegration

i

ât

ω̂t

The  relative  pose  measurement  data  of  the  IMU  between  two  image  frames  can  be  obtained  through  IMU
preintegration processing. First,  based on the time scale of the continuous image frame ,  the image frame and the
IMU  measurement  frame  are  frame-aligned,  and  IMU  preintegration  is  performed  between  the  aligned  frames.
Define the body coordinate system b and the world coordinate system w, and assume that the IMU coordinate sys-
tem coincides with the body coordinate system. In the body coordinate system b, the raw measurement value  of
the IMU accelerometer and the raw measurement value  of the gyroscope are

ât = at +bat
+Rt

wgw+na,

ω̂t = ωt +bωt
+nω,

(6)
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at ωt

bat
bωt

Rt
w

gw

na nω
bi

bi+1

[ti, ti+1]

where  and  represent  the  true  values  of  the  acceleration  velocity  and  angular  velocity  of  the  IMU at  time t,
respectively.  and  indicate the accelerometer bias and gyroscope bias of the IMU at time t,  respectively. 
means the transformation matrix from the world coordinate system w to the body coordinate system b at time t. 
refers to the gravity acceleration in the world coordinate system w, and  and  are generally regarded as zero. In
the given alignment frame of the body coordinate system b, the i-th frame and the (i+1)-th frame are recorded as 
and , respectively. In the world coordinate system w, by integrating the IMU measurement values within the time
interval , the position, speed, and rotation of the (i+1)-th frame can be obtained as

pw
bi+1
= pw

bi
+ vw

bi
∆ti+

x
t∈[ti ,ti+1]

(
Rw

t

(
ât −bat

)
−gw

)
dt2,

vw
bi+1
= vw

bi
+

w
t∈[ti ,ti+1]

(
Rw

t

(
ât −bat

)
−gw

)
dt,

qw
bi+1
= qw

bi
⊗

w
t∈[ti ,ti+1]

1
2
Ω
(
ω̂t −bωt

)
qbi

t dt,

(7)

where

Ω (ω) =
ï
−⌊ω⌋× ω
−ωT 0

ò
,⌊ω⌋× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (8)

pw
bi

vw
bi

qw
bi

Rw
t

with , ,  and  representing the position, velocity, and rotation of the i-th frame relative to the world coordi-
nate  system w. t stands  for  the  timestamp  between  the i-th  frame  and  the  (i+1)-th  frame.  denotes  the  rotation
matrix relative to the world coordinate system w at time t. To separate the preintegration optimization variables [24],
the world coordinate system of formula (7) is transformed into the body coordinate system. Multiplying both sides of
formula (7) by b, we have

Rbi
w pw

bi+1
= Rbi

w

Å
pw

bi
+ vw

bi
∆ti−

1
2

gw∆ti
2
ã
+αbi

bi+1
,

Rbi
wvw

bi+1
= Rbi

w

(
vw

bi
−gw∆ti

)
+βbi

bi+1
,

qbi
w ⊗qw

bi+1
= γbi

bi+1
,

(9)

where

αbi

bi+1
=

x
t∈[ti ,ti+1]

(
Rbi

t

(
ât −bat

))
dt2,

βbi

bi+1
=

w
t∈[ti ,ti+1]

(
Rbi

t

(
ât −bat

))
dt,

γbi

bi+1
=

w
t∈[ti ,ti+1]

1
2
Ω
(
ω̂t −bωt

)
γbi

t dt,

(10)

αbi

bi+1
βbi

bi+1
γbi

bi+1

Rbi
t

with , , and  indicate the integrated values of the position, velocity, and quaternion (PVQ) between the i-
th frame and the (i+1)-th frame in the body coordinate system b.  implies the rotation matrix relative to the i-th
frame in the body coordinate system b at time t.

Rbi
t ti Rbi

t(
Rbi

t = Rbi

bi
= I
)The rotation matrix in the integration term is replaced by . In the initial frame , the rotation matrix  in

the body coordinate system is set to be ,  eliminating the dependence on the initial pose information
through preintegration. Then, the discrete form of the preintegration using the midpoint method can be obtained as

αbi

t+1 = α
bi
t +β

bi
t dt+

1
4
[
qt
(
ât −bat

)
+qt+1

(
ât+1−bat+1

)]
dt2,

βbi

t+1 = β
bi
t +

1
2
[
qt
(
ât −bat

)
+qt+1

(
ât+1−bat+1

)]
dt,

γbi

t+1 = γ
bi
t ⊗

1
2

Å
1
2

(ω̂t + ω̂t+1)−bωt

ã
dt.

(11)

3.4. Visual-Inertial Odometry
The visual-inertial  odometry module uses the sliding window strategy to select the most recent image frames

and IMU frame information as the optimization window for pose estimation and optimization. Considering that there
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is a coupling relationship between the historical frames (that need to be discarded) and the frames in the current win-
dow, the Schur complement method is used in this article to marginalize the historical frame constraint information.
The prior information of the marginalized optimization variables is added to the back-end optimization residual in the
function model.

∆xk1

∆xk2

J(xk)T J (xk)∆xk = −J(xk)T f (xk) H∆xk = b

H = J(xk)T J (xk)
ï

A B
BT C

ò
H∆xk = b

Assume that  the  variable  that  needs  to  be  retained is ,  and the  variable  that  needs  to  be  marginalized is
. To solve the nonlinear least square problem in SLAM, we take the Gauss-Newton method as an example. The

core  is  to  solve  which  can  be  abbreviated  as .  Due  to  the  sparsity  of

, the structure of H can also be rewritten as . Therefore, the equation  can be

transformed into ï
A B
BT C

òï
∆xk1

∆xk2

ò
=

ï
b1

b2

ò
, (12)

where A is a block diagonal matrix with the dimension of each diagonal block being the same as the dimension of the
camera parameter, and the number of diagonal blocks is equal to the number of camera variables.

Taking into account the diagonal block inversion characteristics, the Shure complement of formula (13) is per-
formed to eliminate the non-diagonal part B of the upper right corner, which results inï

I −BC−1

0 I

òï
A B
BT C

òï
∆xk1

∆xk2

ò
=

ï
I −BC−1

0 I

òï
b1

b2

ò
. (13)

Equation (13) can be rearranged asï
A−BC−1BT 0

BT C

òï
∆xk1

∆xk2

ò
=

ï
b1−BC−1b2

b2

ò
. (14)

∆xk1After the elimination step, the incremental equation retaining the optimization variable can be obtained as[
A−BC−1BT

]
∆xk1 = b1−BC−1b2. (15)

∆xk2

∆xk1

Note  that  the  constraint  information  of  the  variable  is  marginalized  and  retained,  and  only  the  variable
 is left.  The marginal processing ensures that the constraint information of the historical state is preserved, the

nonlinear optimization dimension is reduced, and the real-time performance of the system is improved.
xci

xwi

xc1
xw1

xc2
xw2

xw2
xw3

The marginalization strategy with 3 visual poses  and 5 landmark points  is shown in Figure 6. The solid
edges (between visual poses and landmark points) refer to the observation constraints, and the arrows (between adja-
cent visual poses) imply the IMU measurement constraints. After  and  are processed through the marginaliza-
tion strategy, the constraints between  and  are increased (the connecting line is bold), and the constraint rela-
tionship between  and  is also increased.
  

x
c1

x
w1

x
w2

x
w3

x
w4

x
w5

x
c2

x
c3

x
c1

x
w1

x
w2

x
w3

x
w4

x
w5

x
c2

x
c3

Figure 6.  Illustration of the marginalization strategy.
 

n mNext, define the full state vector of  aligned intra-frame IMUs and the full state vector of  feature points in
the sliding window as

X =
[
x0, x1, · · · , xn, xb

c ,λ0,λ1, · · · ,λm, td
]
,

xi =
[
pw

bi
,vw

bi
,qw

bi
,ba,bg

]
, i ∈ [0,n] ,

xb
c =
[
pb

c ,q
b
c

]
,

(16)

X xi pw
bi

vw
bi

qw
bi

ba bg

xb
c pb

c qb
c

where  represents the full state vector, and  consists of the position , velocity , and rotation  of the IMU
in the world coordinate system w of the i-th aligned frame.  and  are the accelerometer bias and gyroscope bias
of the IMU in the body coordinate system b.  indicates the displacement  and rotation  of the camera coordi-
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λi

td

nate  system c relative  to  the  body coordinate  system b,  i.e.,  the  camera extrinsic  parameters.  means the inverse
depth information of the feature point, and  is the time offset.

Based  on  the  sliding  window,  the  previous  information  of  marginalization,  IMU  measurement  residual  and
visual reprojection residual are fused. Three types of residuals are expressed as follows by using the dimension-inde-
pendent Mahalanobis distance.

min
X

{∥∥rp−HpX
∥∥2
+
∑
i∈B

∥∥rB
(
ẑbi

bi+1
,X
)∥∥2

pbi
bi+1

+
∑

(l, j)∈C
ρ

Å∥∥∥rC

Ä
ẑC j

l ,X
ä∥∥∥2

P
C j
l

ã}
, (17)

(
rp−HpX

)
rB
(
ẑbi

bi+1
,X
)

rC

Ä
ẑC j

l ,X
ä

pbi

bi+1

PC j

l ρ (s)

where  stands for the marginalized prior information,  represents the IMU measurement
residuals between the i-th frame and the (i+1)-th frame, and  denotes the visual measurement residual of
the l-th feature point first observed in the j-th frame image. B indicates the set of all IMU observations, and C refers
to the set of features observed at least twice in the current sliding window.  implies the covariance matrix of the
IMU preintegration noise, and  means the covariance matrix of the visual observation noise.  is the Huber
norm defined as

ρ (s) =
ß

1
2
√

s−1
s≥1
s < 1 , (18)

The Huber  norm is  used as  a  robust  kernel  function to  ensure  that  the  error  of  each edge does  not  grow too
large. Finally, using the graph optimization theory, the BA algorithm is used to minimize the residual function model
mentioned above to reduce the accumulated errors resulting from long-term system operation.

3.5. Loop Closure Optimization

ηi = T Fi× IDFi

=
ni

np
. log

n
ni
.

(19)

L1 L1Perform the image frame similarity scoring via the cosine similarity or the  norm. Taking the  norm as an
example, the image frame similarity scoring can be described as

s (v1,v2) = 1− 1
2

∣∣∣∣ V1

|V1|
− V2

|V2|

∣∣∣∣ . (20)

Loop closure detection [25] is performed every time a new key frame arrives as an input. If no loop is detected,
the visual words of the key frame are added, and the visual dictionary is updated and maintained. If a loop is detected,
subsequent global pose optimization or relocation is performed.

In the subsequent loop closure optimization process , the pose graph optimization method is adopted to allevi-
ate the computational pressure of incremental calculation. That is, the poses are only adjusted according to the con-
straints without considering landmark nodes.

p(
q̂w

v , p̂
w
v

)Assume that there is a loop between the current frame  and the historical frame v. Since the pose information
of the historical frame can be obtained through the pose graph or the output of the odometer, it is further assumed that
the pose is a fixed constant, denoted as . Based on the original tightly coupled optimization residual function
model, the residual  function optimization model can be obtained as follows by incorporating the loop closure con-
straint information of the current frame and the historical frame.

min
X


∥∥rp−HpX

∥∥2
+
∑
i∈B

∥∥rB
(
ẑbi

bi+1
,X
)∥∥2

pbi
bi+1

+
∑

(l, j)∈C
ρ

Å∥∥∥rC

Ä
ẑC j

l ,X
ä∥∥∥2

P
C j
l

ã
+∑

(l,v)∈τ
ρ
Ä∥∥rC

(
ẑv

l ,X, q̂
w
v , p̂

w
v

)∥∥2
PCv

l

ä  . (21)

τ p (l,v)where  represents the feature set between the current frame  and the historical frame v.  denotes the observa-
tion  of  the l-th  feature  in  the  historical  loop  closure  frame v.  The  optimization  terms  in  the  model  include  the
marginalization  prior  information,  IMU measurement  bias  residuals,  visual  reprojection  residuals,  and  loop  closure
constraint residuals. Since the pitch and roll angles of the IMU measurement data are quite considerable, only the four-
degree-of-freedom pose graph is optimized for translation components and yaw components.

4. Experiments

In  the  system  experiments,  a  desktop  computer  is  applied  to  train  the  deep  learning  semantic  segmentation
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model and verify the performance of the proposed system in this paper.
The computer is equipped with the Intel Core i7 8700k CPU @3.7GHz, 32GB DDR4 memory, GTX 1080Ti

graphics card, Ubuntu 18.04 operating system, ROS Melodic version robot operating system, OpenCV3, Eigen, Pan-
golin, G2O[26], Ceres Solver, etc. Besides, programming is performed using C++ and Python languages.

The specific experimental verification employs the EuRoC dataset from the ETH Zurich and the KITTI data set,
which are jointly produced by the Karlsruhe Institute of Technology in Germany and the Toyota American Institute
of Technology. On this basis, the multi-modal information fusion localization and mapping experiments are carried
out  in  the  non-dynamic interference  loop  closure  environment  and  the  dynamic  interference  environment,  respec-
tively.

4.1. Experimental Setup in Static Loop Closure Environment Without Dynamic Interferences
The MH05 complex loop closure environment sequence dataset in the EuRoC dataset is selected for the multi-

modal information fusion localization and mapping experiment in the loopback environment without dynamic inter-
ferences. For data collection, the EuRoC data set is based on the AscTec firefly hexacopter micro-aircraft  platform
which does not contain dynamic objects, The localization accuracy can reach the sub-millimeter level. Specifically,
the  pose  estimation  performances  are  compared  between  the  ORB-SLAM vision-only  algorithm and  the  proposed
VIO method. The ORB_SLAM algorithm is a purely visual algorithm released in 2015. Its front-end uses visual fea-
ture extraction and matching methods, and its back-end uses the BA optimization and loop detection methods based
on the bag-of-words model.

The  proposed  method  effectively  fuses  IMU inertial  information  based  on  the  ORB-SLAM framework.  The
effectiveness is verified for the pure visual approach, the visual-inertial optimization method without loop closure, and
the visual-inertial system with loop closure optimization. Figure 7 shows the pose estimation diagrams for relocaliza-
tion with and without loop closure detection. In Figure 7, the green line denotes the output of the pose localization
trajectory without loop closure optimization, the red line stands for the output of the localization pose trajectory with
loop closure  optimization,  and the  red  connecting  line  means  the  occurrence  of  closures.  Furthermore,  the  specific
pose trajectory accuracy is represented by the absolute pose error between the estimated pose and the ground truth.
 
 

(a)

(b)

Figure 7.  Comparison  of  pose  estimation  with  and  without  loop  closure  detection  and  relocalization. (a) Trajectory
plot without loop closure optimization. (b) Trajectory plot with loop closure optimization, where the red trajectory rep-
resents the optimized trajectory after loop closure.

 

Figure 8 and Figure 9 present the visual comparisons of the 3D pose trajectory with ground truth, and the 3D
position and rotation attitude with ground truth. Figure 10 shows the comparison of absolute pose errors. In virtue of
Figures 8−10, it  is evident that the pose estimation accuracy of the proposed method is better than that of the pure
visual localization method, and the performance is further improved with the introduction of loop closure optimiza-
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tion. To better explain and quantify the accuracy of the proposed system, various criteria are used for comparisons of
absolute  pose  errors,  including  the  root  mean  square  error  (RMSE),  mean  error,  median  error,  standard  deviation
(std), minimum error, maximum error, and sum of squared errors (SSE). The specific error values are listed in Table 1.
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Figure 8.  Comparison of 3D pose trajectory with ground truth trajectory.
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Table 1    Absolute pose errors in localization and mapping experiment without dynamic interferences
Methods rmse mean median std min max sse

orb_salm 0.362 0.318 0.290 0.172 0.070 0.694 28.158

vio_noloop 0.194 0.180 0.156 0.072 0.074 0.390 41.721

vio_loop 0.154 0.146 0.139 0.050 0.024 0.269 17.360
 

It can be observed that in complex loop closure scenarios with significant variations of lighting conditions and
localization loss risks of unmanned devices, the proposed system method without loop closure optimization improves
the absolute pose estimation accuracy by 57.5% compared to the ORB-SLAM visual-only algorithm. With the intro-
duction of loop closure optimization, the pose trajectory estimation accuracy further improves by 20.6% compared to
the non-loop closure optimized approach. Overall, these results demonstrate 78.1% accuracy improvement of the pro-
posed method compared to the pure visual localization methods. The front-end of this method can process image and
IMU  frames  at  a  maximum  speed  of  43  frames  per  second,  which  is  faster  than  the  back-end  optimization  rate
(15Hz), thereby meeting the real-time requirements of the system.

4.2. Experimental Setup in Dynamic Interference Environment
For  the  experiment  in  a  dynamic  interference  environment,  the  KITTI  dataset  sequence  01  is  selected.  The

KITTI dataset consists of two color cameras, two grayscale cameras, one GPS/IMU navigation device, and one 3D
laser  scanner.  The  data  is  collected  from  various  real-world scenarios  such  as  urban,  rural,  and  highway  environ-
ments,  with the data synchronization and distortion removal  process performed at  a  rate  of  10Hz.  The dataset  also
includes a significant amount of dynamic interfering objects. As such, the dynamic object segmentation is performed
through the  deeplabvV3  semantic  segmentation  network,  and  the  dynamic  object  features  are  assessed  and  elimi-
nated during the front-end feature extraction and tracking process. The comparison of feature points is shown in Fig-
ure 11 before and after dynamic object feature removal. We specifically compare the pose estimation output of our
proposed method with that of the popular visual-inertial localization and mapping algorithm (VINS-Mono[27]). The
VINS-Mono  algorithm  was  published  in  2018.  Its  front-end  involves  feature  extraction  and  optical  flow  tracking
along with the fusion of IMU information. Also, the back-end incorporates pose graph optimization and visual fea-
ture loop detection. The specific comparison result is presented in Table 2 in terms of absolute pose errors.
 
 

Figure 11.  Comparison of dynamic objects before and after removal.
 
 

Table 2    Absolute pose errors in localization and mapping under dynamic interference environments
Methods rmse mean median std min max sse

vins_mono 6.615 6.164 5.838 2.402 2.234 19.795 41529.4

vio_dte 5.069 4.701 4.833 1.898 0.250 9.436 24645.2

 
Figure 12, Figure 13, and Figure 14 present visual comparisons of the 3D pose trajectory with ground truth, the

3D position and rotation attitude with ground truth, and the comparison of absolute pose error, respectively.
 
 
 
 

IJNDI, 2024, 3, 100008. https://doi.org/10.53941/ijndi.2024.100008

 
12 of 15

https://doi.org/10.53941/ijndi.2024.100008
https://doi.org/10.53941/ijndi.2024.100008
https://doi.org/10.53941/ijndi.2024.100008


 

tum_01_gt

vins_mono

vio_dte

ReferenceError mapped onto trajectory
- 9.436

- 4.843

- 0.250

x/m

y/
m

z/
m

  
  

200

800

200

0

1000

250

400

600

0

250

750

0

600

400

−200

500

500

−250

800

200

−400

750

250

−500

1000

0

−600

1000

0

−750

1200

−200

−800

1250

−250

−1000

1400

−400

−1000

1500

−500

−1250

1600
−600

−1200

1750
−750

−1500

x/m

y/
m

z/
m

  
  

Figure 12.  Comparison of the 3D pose trajectory with the ground truth trajectory.
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Figure 14.  Comparison of absolute pose error.
 

By  effectively  removing  dynamic  object  features  through  a  deep  learning-based semantic  segmentation  net-
work, the effect of dynamic objects on pose estimation and mapping is significantly reduced. The pose estimation tra-
jectory  demonstrates  23.4%  accuracy  improvement  of  the  proposed  method  compared  to  the  VINS-Mono  visual-
inertial  localization  and  mapping  algorithm.  The  front-end  data  processing  speed  is  21Hz,  which  is  faster  than  the
back-end optimized output rate (15Hz), meeting the real-time requirements of the system.
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5. Conclusions

This work has proposed a localization and mapping scheme for visual-inertial multi-modal information fusion
and deep learning dynamic object  removal.  Through experiment verification and testing,  the following conclusions
can be drawn.

1) This study has cleverly solved the problem of traditional pure visual optical flow tracking methods affected
by factors such as environmental light intensity, and has improved the robustness and positioning accuracy of the sys-
tem.

2)  The constructed system has effectively overcome the problem of  reduced sensor  pose estimation accuracy
caused by dynamic targets and information redundancy in scene map construction.

3)  The  visual-inertial  constraint  loop  detection  optimization  method  has  successfully  reduced  the  cumulative
error  caused  by  the  continuous  pose  calculation  of  the  system  in  long-running  and  complex  loop  scenes,  thereby
enhancing the adaptability of the system in various environments.

Future research directions include investigating and designing systems that incorporate laser depth information,
as well as refining the subsequent mapping process. This would enable more accurate depth information for front-end
pose estimation, as well as densification and refinement of scene reconstruction.
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