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Abstract: Federated  learning  is  a  newly  developing  distributed  machine  learning  technology,  which
makes it  possible for users to train machine learning models with decentralized privacy data. Owing to
huge communication overhead, the traditional federated learning algorithm samples user data randomly,
which  may  reduce  the  performance  of  the  model  due  to  the  statistical  heterogeneity  of  users.  In  this
paper,  we  propose  a  distillation-based  user  selection  algorithm for  federated  learning  in  heterogeneous
situations. Based on knowledge distillation, the soft targets of users are uploaded to the server as a basis
for user selection. Our algorithm reduces the statistical heterogeneity of selected users, resulting in low
additional communication and computation overhead. Experiments implemented on MNIST and fashion-
MNIST show that  the  proposed algorithm obtains  better  model  performance as  compared to  the feder-
ated averaging algorithm and several other user selection algorithms.
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1. Introduction

In recent years, the usage of mobile devices has greatly increased. The widespread application of smartphones
[1],  internet  of  things devices [2],  drones [3]  and digital  healthcare equipment [4]  has generated a large amount of
data, which is potentially valuable for machine learning. In the above scenarios, traditional centralized machine learn-
ing is no longer applicable, as significant communication overhead is required to gather a huge amount of data (held
by users) on a server for centrally training models. In addition, the growing awareness of privacy makes people cau-
tious about sharing their private data with others.

Federated learning [5], as a new machine learning paradigm, has been proposed to jointly train machine learn-
ing models among users without privacy leakage. The basic feature of federated learning is that only models, rather
than raw data, are uploaded to the server from users. By performing local training on the user side and global aggre-
gation on the server side, federated learning enables joint training of machine learning models while keeping raw data
local.

Federated learning still faces many challenges in practical applications despite its advantages of processing large-
scale distributed data [6]. Communication constraints are widely considered in the research of distributed systems [7],
which are mainly caused by the up-link bandwidth limitation of wireless networks [8]. Frequent uploading of model
parameters in federated learning causes huge overhead in the communication process, prohibiting the use of big mod-
els.

Another  challenge  of  federated  learning  is  user  heterogeneity,  which  may  lead  to  a  significant  decline  in  the
model  performance  [9].  User  heterogeneity  can  be  divided  into  system  heterogeneity  and  statistical  heterogeneity.
System  heterogeneity  refers  to  the  differences  (e.g.  computing  and  communication  capabilities)  in  devices  among
users. Statistical heterogeneity refers to the differences in data distributions among users. Non-independent and iden-
tically distributed (non-iid) user data is the main source of statistical heterogeneity in federated learning. For simplic-
ity, we only take into account the statistical heterogeneity of users in this paper.

To  address  the  two  challenges  mentioned  above,  various  user  selection  algorithms  have  been  proposed.  The
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user selection algorithm in federated learning has been first proposed in [5] to reduce communication overhead when
aggregating model parameters. The impact of user heterogeneity would be mitigated if an appropriate user selection
algorithm is applied. Taking advantage of the user model, a deep Q-learning-based mechanism has been proposed in
[10] to select a subset of devices in each communication round. Note that, the application of the principal component
analysis and reinforcement learning brings massive additional computing overhead on the server side.

A large number of user selection algorithms have been proposed, and the fundamental limitation of those algo-
rithms is the requirement of large additional computational overhead on the server side. In order to address the above
issues, we propose a distillation-based user selection algorithm for heterogeneous federated learning. In the proposed
algorithm, a knowledge distillation algorithm is used to make each user compute soft targets (i.e. the posterior proba-
bility distribution of data samples belonging to each label) locally. The soft targets of users are collected by the server
and  used  to  obtain  the  user  selection  set  through  clustering  algorithms.  In  addition,  the  knowledge  distillation  loss
function is applied to improve model accuracy.

The main content and key contributions of this paper are listed below.
● We propose  a  distillation-based  user  selection  algorithm for  federated  learning  in  heterogeneous  situations.

Our  algorithm  combines  the  knowledge  distillation  with  the  user  selection  to  reduce  the  heterogeneity  of  selected
users, without incurring significant computation and communication overhead.

● Based on the theory of the critical learning period of federated learning, experiments are designed to verify
the impact of user selection rates on performance in early iterations.

● Experiments  on MNIST and fashion-MNIST datasets  are carried out  to verify the performance of  the pro-
posed algorithm. Our algorithm outperforms multiple user selection algorithms in given scenarios.

2. Related Work

2.1. Federated Learning

The classic federated learning method adopts a centralized architecture where a number of users hold their own
private  data.  The  server  collects  and  aggregates  models  trained  by  users.  Federated  averaging  (FedAvg)  [5]  is  the
most widely used federated learning algorithm. In this algorithm, the federated learning system consists of a parame-
ter  server  and  several  users.  The  server  broadcasts  global  model  parameters  to  all  users.  Each  user  uses  its  own
dataset  to  calculate  local  parameters  using  stochastic  gradient  descent  (SGD).  After  several  iterations,  the  local
parameters are uploaded to the parameter server. The server then performs the aggregation operation to get the global
model, and the above process is cycled until convergence. Theoretically, FedAvg has the convergence guarantee on
non-iid datasets in non-convex settings with partial user participation [11]. Although FedAvg performs well in sim-
ple image classification and natural language processing tasks, its performance drops significantly when the data dis-
tribution is non-iid.

2.2. User Selection in Federated Learning

The user selection strategy in federated learning specifies that part of the users participate in the update of the
global  model  at  each iteration.  As the  baseline  algorithm of  federated learning,  FedAvg randomly selects  a  certain
proportion of users at each global iteration. Although communication overhead is reduced, user heterogeneity is not
taken into account while selecting users in FedAvg. An innovative study [12] has taken system heterogeneity and sta-
tistical heterogeneity into consideration together, and proposed an adaptive user selection algorithm. In order to esti-
mate the upper bound of the user’s gradient, additional communication and computation are required. Clustered sam-
pling has been proposed in [13] to reduce the variability of user selection and increase the probability of users with a
unique data distribution selected.  A joint  strategy for user selection and data offloading has been proposed in [14],
enabling users with low data similarity to offload data from each other to improve efficiency. The above algorithms
may face potential privacy leakage risks. The ‘power-of-choice’ selection strategy has been proposed in [15] to select
users with larger loss functions. The above algorithm increases the accuracy and reduces the number of users partici-
pating in the update, thereby improving the rate of convergence at the cost of reducing robustness.

2.3. Knowledge Distillation

As proposed in  [16],  the  knowledge distillation technology has  made it  possible  to  train  a  lightweight  model
whose performance is similar to a complex model on the same dataset. The core idea of knowledge distillation is to
make the student model approximate the soft target of the teacher model by using the same sample for classification.
The soft targets of the teacher model are believed to contain knowledge which can improve the performance of the
student model. Although knowledge distillation has great potential in distributed machine learning, its application is
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hindered  by  the  privacy-sensitive  characteristics  of  federated  learning.  In  order  to  introduce  knowledge  distillation
technology  into  federated  learning,  the  basic  concept  of  knowledge  distillation  is  interpreted  in  various  different
aspects. Federated distillation has been proposed in [17] to reduce communication overhead, where the logit vector
(instead of the model) has been shared between the server and users. An ensemble distillation method has been pro-
posed in [18] where an unlabeled dataset from the server has been used to compute the logit output. Distillation-based
semi-supervised federated learning has been introduced in [19] to share an unlabeled dataset among users to reduce
the impact of statistical heterogeneity. Note that It is difficult to obtain a suitable public dataset in practical applica-
tion scenarios due to the privacy and complexity of the data. In order to overcome this issue, our algorithm utilizes
the  knowledge distillation method without  the  need to  share  any datasets  among users.  FedKD [20] has  been pro-
posed based on adaptive mutual knowledge distillation and dynamic gradient compression techniques, which is both
communication-efficient  and  effective.  FedFTG has  been  proposed  in  [21]  to  mitigate  the  distribution  discrepancy
across  users  through  direct  model  aggregation.  EFDLS [22]  has  made  it  possible  for  users  to  solve  different  time
series classification tasks using knowledge distillation.

3. Problem Formulation

In this section, we consider a distributed optimization problem under a basic federated learning setting, where
all users share the same model structure. Each user is associated with a local loss function and the global loss func-
tion is a weighted sum of local loss functions

f (w) =
N∑

i=1

pi fi (w) (1)

fi (·) fi (w) = Eζi∼Di
L (w;ζi) N ζi

i ζi = (xi,yi) xi yi

ζi pi i
∑N

i=1 pi = 1 pi ≥ 0

pi
1
N

w Di i Di

where  is the loss function held by each user, and .  is the number of users.  is a sin-
gle data sample held by the -th user. For classification tasks, , where  and  are the feature and label of
the data sample ,  respectively.  is  the weight  of  the -th satisfying  and .  For simplicity,  we

assume that all users have the same data size as well as the same importance, therefore  is set to be  for each
user.  is the model parameter shared among users.  is the dataset held by the -th user. In the iid setting,  has
the same distribution for all users.

The goal of federated learning is to find the optimal solution through solving the following joint optimization
problem:

w∗ = argmin
w∈Rd

f (w) (2)

dwhere  is the dimension of the model parameter.
In this article, we only study the classification problem, which satisfies the demand for knowledge distillation.

The most commonly used training loss function for classification is the cross entropy. Based on [16], the knowledge
distillation loss function can be written as

L (w;ζi) = αT 2∗KLdiv
(
QτS ,QτT

)
+ (1−α)∗CrossEntropy (QS ,ytrue) (3)

QτS QτT τ (> 1) QS

ζi w ytrue ζi α

where  and  are the local soft targets and global soft targets using the same temperature .  is the out-
put label of the data  of the model , and  is the true label of data .  is a trade-off parameter for soft loss
and hard loss.

wt−1
Based  on  basic  federated  learning  settings,  the  training  process  is  divided  into  two  parts:  local  training  and

parameter  aggregation.  Each  user  downloads  the  current  global  model  weights  from  the  server,  and  updates
local parameters by using the following SGD:

wt−1
i ← wt−1

i −η∇L
(
wt−1

i ;ζi
)

(4)

η B Bwhere  is the learning rate. The above process will be repeated  times, and  is the local batch size.
In the parameter aggregation step, the server collects and aggregates parameters from selected users by

wt =

∑
i∈Iwt−1

i

|I| (5)

I I |I|
|I| = C∗K C K

where  is the user selection set. All users in  are selected to participate in the parameter aggregation step.  is the
number of selected uses subject to , where  is the user selection rate and  is the number of users. The
user selection algorithm is designed in the next section to obtain the user selection set.
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4. Algorithm

In this section, a distillation-based user selection algorithm is proposed to overcome the negative impact of the
non-iid user data.

The existing study of the user selection algorithm considers the rate of convergence of the training process theo-
retically. This is reasonable when the global optimal solution can be found using the gradient-based method (when
the loss  function is  convex).  In  the  case  of  non-convex loss  functions,  it  is  uncertain  to  which stationary point  the
parameter  converges.  How to  make  the  model  converge  to  a  better  stationary  point  is  an  important  issue.  Critical
learning periods in federated learning proposed in [23] indicate that the initial learning phase plays a critical role in
federated learning. The accuracy of the global model will permanently decrease if defective data (e.g. low resolution
images) is sued in the initial learning phase, no matter how many additional training epochs are performed in feder-
ated learning. Inspired by the above research, the user selection algorithm in early epochs may be particularly impor-
tant to the final model performance. The more evenly distributed the overall user data is, the higher the quality of the
selected  training  samples  is.  Considering  the  communication  constraints  in  practical  application  scenarios,  it  is  not
practical  to  use  a  large  user  selection  rate  in  multiple  epochs.  To  balance  model  performance  and  communication
efficiency, the user selection rate is set to be 1 in early epochs, and is then declined to the following constant:

Ct =

ß
1

(
t≤ t0

)
C (t > t0) (6)

In order to alleviate the statistical heterogeneity of users, we hope to obtain the distribution of user data. Due to
the  user  privacy  preserving  characteristic  of  federated  learning,  the  server  cannot  get  access  to  the  privacy  data
directly, which means that the users’ data distribution cannot be obtained in an explicit expression. According to [9],
there is  an implicit  connection between the distribution of the training samples on a device and the model weights
trained based on those samples, and the weight divergence between users is strictly bounded by the users’ data distri-
bution. It has been proposed in [24] that when selecting users, users with similar computation ability can be clustered
into a group to mitigate the straggler effect (i.e. additional time consumption caused by system heterogeneity). The
above heuristic research can be extended to solve the problem of statistical heterogeneity. The idea of clustering users
with similar data distributions can be used to accelerate model convergence when selecting users [13]. Taking the K-
means algorithm as an example,  the time complexity of  clustering algorithms is  positively correlated with the data
dimension [25]. Directly using model parameters for clustering may incur significant computational overhead.

To address the above issues, we propose a distillation-based user selection algorithm. Instead of selecting users
based on their data or models, the proposed algorithm uses their soft targets as an indicator for selecting users. Differ-
ent from [18], our algorithm does not require an open dataset, but requires users’ local data to generate soft labels.
The clustering algorithm is implemented on the server side to obtain the user selection set. The distillation and aggre-
gation processes of the proposed algorithm are shown in Figures 1 and 2.
  

Global soft targets

Local soft targets

0123456789

0123456789 0123456789

Figure 1.  The knowledge distillation process of the proposed algorithm.
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Global models

Local models

Selected users

Figure 2.  The federated aggregation process of the proposed algorithm.
 

As shown in Algorithm 1, on the server side, the global model and the global soft targets are broadcasted to all
users at each global iteration. The server collects all soft targets from users and averages them to obtain the global soft
targets for each label. For user selection, the server implements a clustering algorithm on the soft targets of each user.
Sampling is conducted in each category to obtain a subset of users. After local training, the server collects local mod-
els uploaded by selected users and calculates the average to obtain new global model parameters. On the user side,
each user  receives  the  global  model  and global  soft  targets  from the  server,  and uses  a  knowledge distillation  loss
function to update model parameters through RGD in (4). At the distillation step, the obtained local model is used to
implement forward propagation based on local data samples to further obtain soft targets for each category.

qτS ,i,c =
exp(zi,c/τ)∑C

j=1
exp(zi, j/τ) (7)

C zi, j wt
i ζiwhere  is the number of labels and  is the output of the local model  on . The soft targets are uploaded to the

server for user selection, and the selected users upload their local models to the server.
 
 

Algorithm 1 Distillation-Based User Selection for Heterogeneous Federated Learning

K i Ct τ TInput: The  users are indexed by ,  is the user selection rate,  is the knowledge distillation temperature,  is the maximum epoch

w0 QτTinitialize ,

t = 0,1, ..Tfor each round  do

i　　for each user  in parallel do

wt
i← LocalU pdate

(
i,wt ,QτT

)
　　　  

QτS ,i← Distillation
(

wt
i;ζi, τ

)
　　　  
　　end for

QτT ←
K∑

i=1

1
K
·QτS ,i　　

I←Clustering
(
QτS ,i,max (Ct ·K,1)

)
　　

wt+1←
∑

i∈I

1
|T | ·w

t
i　　

end for

wTOutput: 
 

5. Evaluation

In this section, the performance of the proposed algorithm is tested through numerical simulation experiments.
We train the convolutional neural network (CNN) model on the MNIST and fashion-MNIST dataset.  The adopted
CNN contains two convolutional layers and two fully connected layers. Followed by the max-pooling layer, two con-
volutional layers increase the number of channels to 20 by using a convolutional kernel size of 5 × 5. Then, two fully
connected layers (with a dropout layer) reduce the output dimension to 10. The dropout rate is set to be 0.5. We use
the following dataset partitioning method to process the non-iid data. The data samples in the training set are divided
into  several  data  shards  and  each  of  the  shards  contains  data  samples  with  the  same  label.  Each  user  is  randomly
assigned with two data shards, which means that each user contains data from at most two different labels. In addi-
tion,  we apply the K-means algorithm on the server side.  The experimental  results indicate that  the K-means algo-
rithm can complete clustering with low time consumption due to the low dimensionality of soft targets.
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5.1. Full User Selection in Early Epochs

lr = 0.01 bs = 4
ep = 3

We first  conduct  an  experiment  on  a  toy  example  to  demonstrate  the  potential  relationship  between  the  user
selection  rate  and  model  accuracy.  We  perform  simulations  using  the  CNN  model  on  MNIST  dataset  under  the
FedAvg framework where the user number is 100, the learning rate is , the local batch size is  and
the local epoch is . All users are selected in the first five epochs in the non-iid situation. Instead of being set to
a constant,  the user selection rate is set to be 1 in a few early epochs, and will be maintained at 0.1 after the early
epochs. In addition, the standard FedAvg experiment is implemented to verify the effect of the full user selection in
early epochs.

As  shown  in Figures  3 and 4,  experimental  results  indicate  that  the  full  user  selection  in  early  epochs  can
improve the model accuracy by 5% and reduce the training loss in non-iid situations. Larger user selection rates can
help to even out data distributions, and significantly improve training effectiveness in early epochs due to the impact
of critical learning periods in federated learning. High user selection rates result in significant communication over-
head,  which  further  incurs  additional  time  consumption.  To  address  this  issue,  the  user  selection  rate  is  set  to  a
smaller constant in the following epochs.
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Figure 3.  Influence of the user selection rate on test accuracy.
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Figure 4.  Influence of the user selection rate on test loss.
 

5.2. Distillation-Based User Selection Algorithm

lr = 0.01 bs = 4
ep = 3 α = 0.1 τ = 4

The distillation-based user selection algorithm is conducted in the following experiment using the CNN model
on MNIST dataset, where the user number is 100, the learning rate is ,  the local batch size is ,  the
local epoch is , the distillation weight is  and the distillation temperature is . The K-means algo-
rithm is used while clustering the local soft targets.

α τTo determine the appropriate distillation weight  and distillation temperature , we apply our method to the
MNIST dataset.

As shown in Table 1, choosing a large distillation weight may slow down the convergence speed, which might
be due to the poor quality of the global soft target. We use the optimal value for the experiment.
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Table 1    Test accuracy at the 30th epoch with different distillation weights and temperatures

τ = 1 τ = 4 τ = 8

α = 0.0 88% 88% 88%

α = 0.1 90% 93% 87%

α = 0.4 82% 86% 81%

α = 0.7 69% 67% 63%

 
We evaluate the performance of the proposed algorithm with FedAvg, power of choice selection strategies [15],

active federated learning [26], FedCor [27], multinomial distribution sampling [28] and clustered sampling [13] under
three different similarity measures in the same settings. FedCor is a federated learning framework built on a correla-
tion-based  user  selection  strategy,  which  utilizes  the  covariance  stationarity  to  reduce  the  communication  cost  and
boost the convergence rate of federated learning. The ‘power-of-choice’ framework is a communication-efficient and
computation-efficient  user  selection framework that  can flexibly  span the  trade-off  between the  convergence speed
and solution bias. Active federated learning selects users based on the current model and the data from each user to
maximize efficiency. We use FedAvg (iid) as an ideal scenario for comparison. For FedCor, ‘power-of-choice’ and
active  federated learning,  we use  the  same hyperparameters  in  our  method,  including the  learning rate,  local  batch
size, and local iteration. Other hyperparameters are set to be the recommended values in the corresponding literature.

Better global soft targets can be obtained by using the full user selection in early epochs, and this accelerates the
local training process. As shown in Figures 5 and 6, the proposed algorithm has more stable performance in terms of
testing accuracy and testing loss. Compared to other algorithms, the proposed algorithm has smaller fluctuations. Due
to the use of higher user selection rates in early epochs, the early performance of the proposed algorithm has been
significantly improved. Compared to ‘power-of-choice’,  active federated learning, FedCor,  multinomial distribution
sampling  and  clustered  sampling,  the  proposed  algorithm  has  a  lower  computational  overhead  on  the  server  side,
making it easier to deploy in environments with scarce server computing resources. Compared to FedAvg, the pro-
posed algorithm saves 20% of communication rounds when achieving an accuracy of 90%. Although our method is
surpassed by some other methods after 25 epochs, the model accuracy can still maintain a slow increase.
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Figure 5.  Influence of the user selection algorithm on test loss.
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In addition, we conduct experiments on the fashion-MNIST dataset with the same settings, and the experimen-
tal results are shown in Figure 7.
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Figure 7.  Comparison of test accuracy using different algorithms on Fashion-MNIST
 

As shown in Figure 7, despite being inferior to FedCor in model performance, our method outperforms other
methods. Compared to MNIST, the features of the fashion-MNIST dataset are more complex and difficult to extract
through the shallow network. Due to the use of the same model for the two tasks mentioned above, the accuracy of
the  model  decreases  on  the  fashion-MNIST dataset.  The  model  accuracy  of  FedAvg  in  the  iid  situation  decreases
from 98% to 82%. Our method significantly surpasses the FedAvg algorithm in the same situation. In addition, bene-
fiting from the clustering-based user selection strategy, the model accuracy in our method increases more smoothly
compared to other methods. Our method significantly outperforms other methods in early epochs, as a better global
model is obtained in the first epoch. The test accuracy may increase if a deeper CNN is used.

6. Conclusion

In this paper, we have discussed the effect of user selection strategies on federated learning under statistical het-
erogeneity. Based on the characteristics  of  the heavy communication overhead of  federated learning,  we have pro-
posed a distillation-based user selection strategy for heterogeneous federated learning. The knowledge distillation loss
function has been applied to local training. Local soft targets have been calculated by all users and uploaded for user
selection.  Based on local  soft  targets,  the server  has  obtained a  user  selection set  through clustering.  The proposed
algorithm can reduce the statistical heterogeneity of users, accompanied by low additional communication overhead.
Numerical  experiments  have  been  designed  to  evaluate  the  performance  of  the  proposed  algorithm.  Experimental
results have validated that the proposed algorithm outperforms FedAvg and several algorithms in a given scenario,
achieving higher accuracy with the same number of communication rounds.
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