Downloads

Bang, Q., Song, W., & Wang, X. . Molecular and cellular contributors of Rheumatoid Arthritis. International Journal of Drug Discovery and Pharmacology. 2024, 3(3), 100018. doi: https://doi.org/10.53941/ijddp.2024.100018

Review

Molecular and Cellular Contributors of Rheumatoid Arthritis

Qingxin Bang 1, Weihua Song 2, and Xiaomeng Wang 1,3,4,*

1 Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore
2 Innoland Biosciences, 400 East Building, 6 West Beijing Road, Taicang 215414, China
3 Singapore Eye Research Institute (SERI) The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
4 Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Dr, Singapore 138673, Singapore

* Correspondence: xiaomeng.wang@duke-nus.edu.sg

Received: 7 March 2024; Revised: 17 May 2024; Accepted: 18 May 2024; Published: 29 August 2024

Abstract: Rheumatoid arthritis (RA) is a chronic immune-mediated condition affecting about 1% of the world population. Persistent synovial inflammation (synovitis) triggers the hyperplastic transformation of the synovium which eventually destroys juxta-articular bones and articular cartilage. As the disease progresses, RA patients may present systemic and extra-articular manifestations. Particularly, RA patients are at an increased risk of developing cardiovascular events and mortality as compared to individuals without RA. Recent advances in understanding the molecular and cellular mechanisms of RA led to the development of disease-modifying drugs and reliable assessment tools that have significantly improved the management of RA. This review focuses on the current understanding of RA pathogenesis and treatment strategies.

Keywords:

Inflammation autoimmune Rheumatoid Arthritis molecular mechanisms therapeutics

1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune and inflammatory condition often affecting symmetrical joints of the body [1]. As the disease progresses, symptoms can spread from smaller joints to weight-bearing joints, such as ankles, knees, and hips [24]. Over time, the joints may deform [5] and eventually lose function [69]. Besides the articular presentation, around 40% [10] of RA patients also experience systemic manifestations affecting all aspects of patients’ organ systems [11‍‒‍22], and these complications are often more fatal to people with RA than those without [10,2326]. Cardiovascular disease [2733] and respiratory disease [3437] are common causes of death in patients with RA.

The prevalence of RA is around 1% worldwide [26,38]. Most patients are first affected in their thirties to sixties, and the disease prevalence increases with age [3941]. Like many autoimmune diseases, the sex difference of the incidence, prevalence, disease course, disease activity, and prognosis of RA is well-established [26,42]. There are many hypotheses for this overrepresentation of women in RA, such as the involvement of x-linked factors and hormonal aspects [4346].

The primary goal of RA therapy is to minimize disease activity and control joint damage [47]. However, the disease symptom persists in a substantial number of patients despite the active treatment and a variety of side effects have been reported for existing antirheumatic drugs. Therefore, effective management of RA remains elusive.

2. Pathogenesis of RA

RA primarily affects the lining of the joints called synovium, a 1–2 cell thick intimal layer of specialized macrophages and Fibroblast Like Synoviocytes (FLS) [4851]. FLS are mesenchymal-derived cells that express extracellular matrix (ECM) proteins, adhesion molecules, integrin receptors, and surface markers. Under normal conditions, FLS serves to maintain the structural and dynamic integrity of the joint by controlling the composition of the synovial fluid as well as the ECM of the joint lining [49,50,5255]. In the rheumatoid joint, FLS becomes hyperproliferative [56,‍57] and contributes to the formation of a highly invasive and destructive phenotype known as pannus [48,‍55,‍58‒62]. The thickened synovium creates a hypoxic environment, which triggers excessive blood vessel formation in an attempt to reduce tissue hypoxia and provide oxygen and nutrients to proliferating FLS. However, these newly formed blood vessels are immature and leaky, therefore, leading to further extravasation of inflammatory cells in the synovium and a vicious cycle of inflammation and tissue damage [6372]. At the pannus-cartilage interface of the rheumatoid joint, FLS triggers differentiation of bone-resorbing osteoclasts, which produce excessive matrix-degrading molecules leading to progressive cartilage and bone erosion [7377]. The phenotypic transformation of the synovium from a quiescent, relatively acellular structure to a hyperplastic, and invasive tissue filled with immunocompetent cells [78], abnormal vasculatures, and excessive fluid limits the range of motion, causes joint deformities which eventually results in functional deterioration and disability [54,63].

The dysfunctional immune system has been the central place for the pathogenesis of RA. Studies showed that RA synovial microenvironment is highly conducive to the formation of neutrophil extracellular traps (NETs) which serve as a rich source of citrullinated proteins [79,‍80]. NETs formation activates peptidylarginine deaminase-4 (PAD4) which is a myeloid-specific PAD involved in the process of citrullination and this causes proteins in the NETs to be citrullinated [79]. These citrullinated proteins have been shown to contribute to increased immunogenicity and arthritogenicity and their presence is correlated to RA disease severity [81,‍82]. They also serve as important RA autoantigens that serve to propagate the spreading of autoimmune response [83,84]. FLS is in direct contact with synovium-infiltrating neutrophils, endocytoses [79] the citrullinated peptides, acquires antigen-presenting cell capability [85], and presents them via the MHC class II (MHCII) to activate the citrulline-specific CD4+ T cells [79,86]. The activated T cells perpetuate inflammation by promoting the release of a large amount of pro-inflammatory molecules, MHC-dependent antigen presentation, FLS activation [87], and inflammatory cell recruitment [88,89], survival [90,91] and retention [92]. Human leukocyte antigen (HLA)-DRB1 is a major MHCII molecule. HLA-DRB1 alleles that code a five-amino acid motif, “shared epitope” (SE), at the positions 70 to 74 of the HLA-DRB1 protein, are strongly associated with RA susceptibility [9395], severity [96], and penetration [97]. However, the contribution of SE to RA pathophysiology remains equivocal.

Besides the adaptive immune system, the innate immune system also contributes to the pathogenesis of RA, at least partially due to the imbalance between inflammatory and anti-inflammatory macrophages. Inflammatory macrophages secrete cytokines, such as Tumour Necrosis Factor (TNF), and interleukin (IL) 1 and 6 [98,99], which lead to further activation of endothelial cells and excessive growth of new blood vessels, another hallmark of RA [100,101], resulting in further recruitment of inflammatory cells and tissue damages. Anti-inflammatory macrophages serve as immunologic barriers in the synovium and disruption of their function propagates inflammatory signals and further promotes the progression of RA [38,52,53,102105].

Recently, premature cell senescence has also been implicated in the pathophysiology [106108] and the development of systemic manifestations in RA [109112]. With age, the adaptive immune system is compromised due to the loss of regenerative capacity and develops a senescence-associated secretory phenotype (SASP). A myriad of inflammatory cytokines and chemokines, matrix metalloproteinases (MMPs), microRNAs, growth factors, and small-molecule metabolites [113115] are produced by senescent cells which lead to the recruitment and further activation of immune cells such as macrophages and neutrophils in the synovium [116,‍117]. However, molecular drivers of premature cell senescence and their impact on changes in other types of cells present in the synovial microenvironment remain to be elucidated.

It is worth highlighting that RA is a multifactorial and heterogeneous disease [118122], which is reflected not only in disease presentation but also in the involvement of numerous pathogenic pathways. Different pathways may contribute to the disease pathophysiology and presentations in individuals with RA hence requiring different treatment approaches. It is not clear why some pathways are more important than others in certain RA patients [38].

3. Pharmacological Strategies and Challenges

Current guidelines and outcome measures for RA focus on alleviating symptoms control of synovitis and preventing joint injuries. Early diagnosis and interventions before irreversible injury of the joints occurs are critical for the management of RA. Like most autoimmune conditions, RA treatment aims at attaining and maintaining disease remission or low disease activity with Disease Modifying Anti-Rheumatic Drugs (DMARDs) [47,123,124]. Disease-modifying antirheumatic drugs (DMARDs) are often prescribed as soon as the diagnosis is confirmed [125127]. There are different groups of DMARDs, including conventional synthetic DMARDs (csDMARD), biologic DMARDs (bDMARD), and a newer class of targeted synthetic DMARDs (tsDMARD). Commonly used csDMARD are methotrexate (MTX), sulfasalazine, leflunomide, and hydroxychloroquine. Low-dose MTX is the first-line treatment for RA and is reported to have a faster onset of action, greater efficacy, and better long-term tolerance as compared to the other csDMARDs [128131]. MTX is a folate antimetabolite that was originally used for the treatment of various cancers as it acts to inhibit DNA synthesis, repair, and cellular replication. However, low-dose MTX is not affected by levels of folic acid, instead, MTX has been reported to dampen the inflammatory environment in RA [132]. Therefore, the MTX likely functions through a folate-independent mechanism in RA. Although MTX is generally well tolerated, significant side effects including bone marrow, lung, and liver toxicity have been reported in RA patients [133136]. In addition, up to 70% of RA patients do not respond to MTX monotherapy [127,137,138]. MTX when initiated is often used with bridging therapy such as nonsteroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids. These drugs act as temporal controls to ease pain and control inflammation while awaiting the response to the slower-acting drugs either in the initiation of treatment or during RA flares. NSAIDs and glucocorticoids although highly effective are not used as monotherapy for a variety of reasons. The use of NSAIDs is associated with unwanted potential side effects, such as heart attack, stroke, stomach irritation, ulcers, and bleeding [139]. Moreover, NSAIDs are merely means of symptom control and areineffective in slowing down the RA progression [125,‍140]. Glucocorticoids on the other hand are often used only in severe RA not ameliorated by NSAIDs [141]. Glucocorticoids are able to slow down the radiologic progression of RA in the short to medium term [7,142144]. Recent 2022 EULAR recommendations have called for stricter adherence to the recommendation of discontinuation of glucocorticoids within 3 months of prescription [47].

Advances in understanding the pathogenesis of RA led to the development of multiple bDMARDs that target specific molecules involved in inflammation and joint destruction. The introduction of bDMARDs has revolutionized the treatment of RA [145]. The biologics commonly used in RA include TNF-α inhibitors (adalimumab, etanercept, and infliximab), IL6 inhibitors (tocilizumab, sarilumab), B cell inhibitors (rituximab), and T cell costimulatory inhibitor (abatacept). With regards to the use of bDMARDs, recent 2022 EULAR guidelines recommend the use of bDMARDs in patients with poor prognostic factors who are not responding to csDMARDs treatment [47]. As such, these biologics are mostly used in patients who continue to exhibit symptoms or show disease progression despite the csDMARD treatment [146,‍147]. In addition, EULAR 2022 recommends that bDMARDs be used in combination with csDMARDs as there is no compelling evidence for monotherapy with bDMARDs [47]. In fact, combinational treatment with bDMARDs and MTX has shown superiority over monotherapy [146,148152].

As biologics and some DMARDs are often immunosuppressive, latent or opportunistic infections may occur in patients under such treatment [153156]. For example, anti-TNFα biologics are known to cause severe opportunistic infections [156,157]. In fact, infections account for about 25% of all RA-related deaths [158]. The immune system is also important for cancer surveillance. Immunosuppression thereby can potentially cause an increased risk for malignancy. Indeed, the use of TNF-α inhibitors has been associated with the increased risk of developing non-melanoma skin cancer [153,‍159,‍160]. Since these drugs target specific pathways, their efficacy varies greatly between individuals, and not all patients respond to a given treatment regimen [161]. For instance, patients testing positive for Rheumatoid factor (RF) and anti-citrullinated peptide antibody (ACPA) had a greater likelihood of response to rituximab than those who are seronegative [162164]. Given the heterogeneity of the disease process of RA, personalized therapy using pharmacogenomics or certain patient characteristics as a predictor of response could be used to guide the selection of biologic therapy.

tsDMARD is a newer class of DMARD for the treatment of RA. The only tsDMARD available on the market is Janus Kinase (JAK) inhibitors [165168]. tsDMARD use is generally recommended only after intolerance or inadequate response to at least one TNF-α inhibitor.

4. Future Directions

Advances in understanding the disease pathogenesis lead to the development of more treatment options for RA. Given the heterogeneity of RA pathogenesis among patients, the effectiveness of biologic agents is highly patient-dependent [169]. Some patients remain treatment-resistant or difficult to treat [170,171] which is likely due to the presence of comorbidities [172,173] or adverse side effects. Although much work has been done to investigate the mechanisms leading to RA development, there are areas less explored. Some of the areas that could be investigated include the antibodies generated from citrullinated peptides [174], primary epigenetic changes in FLS [99,175,176], and synovial neovascularization [177180]. Further insights into RA pathogenesis will also pave the way for personalized therapy, thereby, leading to better treatment outcomes. Delving into the development of personalized medicine, however, would require a clearer understanding of the intricate interplay of compounding factors that could contribute to an individual’s propensity to develop RA. Factors include the genetic makeup of an individual, their immunological landscape as well as environmental factors. Only with a clear understanding of the molecular mechanism giving rise to RA would clinicians be able to truly discern why certain groups of patients respond well to certain treatments and not others. This would reduce the need for multiple treatment trials before finding a drug that worked for each individual. A deeper understanding of the molecular mechanism contributing to RA pathogenesis would also allow for the identification of specific biomarkers that could offer early diagnosis, predict treatment responsiveness/adverse outcomes, or predict disease progression which is critical for the effective management of RA.

In essence, the advancement of treatment modalities in RA will depend highly on deepening understanding of RA pathogenesis and uncovering molecular signatures that would allow for personalized therapy and improved patient outcomes.

Funding: This research was funded by Duke-NUS Start-Up Grant, the Singapore National Medical Research Council NMRC/IRG/22jul-0043 to X.W.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

  1. Lee, D.M.; Weinblatt, M.E. Rheumatoid arthritis. Lancet 2001, 358, 903–911. doi:10.1016/S0140-6736(01)06075-5.
  2. Fleming, A.; Crown, J.M.; Corbett, M. Early rheumatoid disease. I. Onset. Ann. Rheum Dis. 1976, 35, 357–360. doi:10.1136/ard.35.4.357.
  3. Jacoby, R.K.; Jayson, M.I.; Cosh, J.A. Onset, early stages, and prognosis of rheumatoid arthritis: A clinical study of 100 withpatients 11-year follow-up. Br. Med. J. 1973, 2, 96–100. doi:10.1136/bmj.2.5858.96.
  4. Masi, A.T. Articular patterns in the early course of rheumatoid arthritis. Am. J. Med. 1983, 75, 16–26. doi:10.1016/0002-9343(83)90471-0.
  5. Wolfe, F.; Sharp, J.T. Radiographic outcome of recent-onset rheumatoid arthritis: A 19-year study of radiographic progression. Arthritis Rheum. 1998, 41, 1571–1582. doi:10.1002/1529-0131(199809)41:9<1571::AID-ART7>3.0.CO;2-R.
  6. Welsing, P.M.; van Gestel, A.M.; Swinkels, H.L.; et al. The relationship between disease activity, joint destruction, and functional capacity over the course of rheumatoid arthritis. Arthritis Rheum. 2001, 44, 2009–2017. doi:10.1002/1529-0131(200109)44:9<2009::AID-ART349>3.0.CO;2-L.
  7. Drossaers-Bakker, K.W.; de Buck, M.; van Zeben, D.; et al. Long-term course and outcome of functional capacity in rheumatoid arthritis: The effect of disease activity and radiologic damage over time. Arthritis Rheum. 1999, 42, 1854–1860. doi:10.1002/1529-0131(199909)42:9<1854::AID-ANR9>3.0.CO;2-F.
  8. Smolen, J.S.; Aletaha, D.; Grisar, J.C.; et al. Estimation of a numerical value for joint damage-related physical disability in rheumatoid arthritis clinical trials. Ann. Rheum Dis. 2010, 69, 1058–1064. doi:10.1136/ard.2009.114652.
  9. Aletaha, D.; Smolen, J.; Ward, M.M. Measuring function in rheumatoid arthritis: Identifying reversible and irreversible components. Arthritis Rheum. 2006, 54, 2784–2792. doi:10.1002/art.22052.
  10. Turesson, C.; Jacobsson, L.; Bergström, U. Extra-articular rheumatoid arthritis: Prevalence and mortality. Rheumatology 1999, 38, 668–674. doi:10.1093/rheumatology/38.7.668.
  11. Deal, C. Bone loss in rheumatoid arthritis: Systemic, periarticular, and focal. Curr. Rheumatol. Rep. 2012, 14, 231–237. doi:10.1007/s11926-012-0253-7.
  12. Louati, K.; Berenbaum, F. Fatigue in chronic inflammation - a link to pain pathways. Arthritis Res. Ther. 2015, 17, 254. doi:10.1186/s13075-015-0784-1.
  13. Nikolaus, S.; Bode, C.; Taal, E.; et al. Fatigue and factors related to fatigue in rheumatoid arthritis: A systematic review. Arthritis Care Res. 2013, 65, 1128–1146. doi:10.1002/acr.21949.
  14. Duffield, S.J.; Miller, N.; Zhao, S.; et al. Concomitant fibromyalgia complicating chronic inflammatory arthritis: A systematic review and meta-analysis. Rheumatology 2018, 57, 1453–1460. doi:10.1093/rheumatology/key112.
  15. Gist, A.C.; Guymer, E.K.; Eades, L.E.; et al. Fibromyalgia remains a significant burden in rheumatoid arthritis patients in Australia. Int. J. Rheum. Dis. 2018, 21, 639–646. doi:10.1111/1756-185X.13055.
  16. Baker, J.F.; Cannon, G.W.; Ibrahim, S.; et al. Predictors of longterm changes in body mass index in rheumatoid arthritis. J. Rheumatol. 2015, 42, 920–927. doi:10.3899/jrheum.141363.
  17. Hickson, L.J.; Crowson, C.S.; Gabriel, S.E.; et al. Development of reduced kidney function in rheumatoid arthritis. Am. J. Kidney Dis. 2014, 63, 206–213. doi:10.1053/j.ajkd.2013.08.010.
  18. Makino, H.; Yoshinaga, Y.; Yamasaki, Y.; et al. Renal involvement in rheumatoid arthritis: Analysis of renal biopsy specimens from 100 patients. Mod. Rheumatol. 2002, 12, 148–154. doi:10.3109/s101650200025.
  19. Sayah, A.; English, J.C. Rheumatoid arthritis: A review of the cutaneous manifestations. J. Am. Acad Dermatol. 2005, 53, 191–209; quiz 210-212. doi:10.1016/j.jaad.2004.07.023.
  20. Joos, E.; Bourgeois, P.; Famaey, J.P. Lymphatic disorders in rheumatoid arthritis. Semin. Arthritis Rheum. 1993, 22, 392–398. doi:10.1016/s0049-0172(05)80031-9.
  21. Luque Ramos, A.; Redeker, I.; Hoffmann, F.; et al. Comorbidities in Patients with Rheumatoid Arthritis and Their Association with Patient-reported Outcomes: Results of Claims Data Linked to Questionnaire Survey. J. Rheumatol. 2019, 46, 564–571. doi:10.3899/jrheum.180668.
  22. Turesson, C.; O’Fallon, W.M.; Crowson, C.S.; et al. Extra-articular disease manifestations in rheumatoid arthritis: Incidence trends and risk factors over 46 years. Ann. Rheum. Dis. 2003, 62, 722–727. doi:10.1136/ard.62.8.722.
  23. Das, S.; Padhan, P. An Overview of the Extraarticular Involvement in Rheumatoid Arthritis and its Management. J. Pharmacol. Pharmacother. 2017, 8, 81–86. doi:10.4103/jpp.JPP_194_16.
  24. Cojocaru, M.; Cojocaru, I.M.; Silosi, I.; et al. Extra-articular Manifestations in Rheumatoid Arthritis. Maedica 2010, 5, 286–291.
  25. Conforti, A.; Di Cola, I.; Pavlych, V.; et al. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmunity Rev. 2021, 20, 102735. doi:10.1016/j.autrev.2020.102735.
  26. Smolen, J.S.; Aletaha, D.; Barton, A.; et al. Rheumatoid arthritis. Nat. Rev. Dis Primers. 2018, 4, 1–23. doi:10.1038/nrdp.2018.1.
  27. Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Rheum. 2008, 59, 1690–1697. doi:10.1002/art.24092.
  28. Gabriel, S.E. Cardiovascular morbidity and mortality in rheumatoid arthritis. Am. J. Med. 2008, 121, S9–S14. doi:10.1016/j.amjmed.2008.06.011.
  29. Løgstrup, B.B.; Ellingsen, T.; Pedersen, A.B.; et al. Cardiovascular risk and mortality in rheumatoid arthritis compared with diabetes mellitus and the general population. Rheumatology 2021, 60, 1400–1409. doi:10.1093/rheumatology/keaa374.
  30. Meune, C.; Touzé E.; Trinquart, L.; et al. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: A systematic review and meta-analysis of cohort studies. Rheumatology 2009, 48, 1309–1313. doi:10.1093/rheumatology/kep252.
  31. Pieringer, H.; Pichler, M. Cardiovascular morbidity and mortality in patients with rheumatoid arthritis: Vascular alterations and possible clinical implications. QJM. 2011, 104, 13–26. doi:10.1093/qjmed/hcq203.
  32. van Halm, V.P.; Peters, M.J.L.; Voskuyl, A.E.; et al. Rheumatoid arthritis versus diabetes as a risk factor for cardiovascular disease: A cross-sectional study, the CARRE Investigation. Ann. Rheum. Dis. 2009, 68, 1395–1400. doi:10.1136/ard.2008.094151.
  33. Romano, S.; Salustri, E.; Ruscitti, P.; et al. Cardiovascular and Metabolic Comorbidities in Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2018, 20, 81. doi:10.1007/s11926-018-0790-9.
  34. Choi, H.K.; Rho, Y.H.; Zhu, Y.; et al. The risk of pulmonary embolism and deep vein thrombosis in rheumatoid arthritis: A UK population-based outpatient cohort study. Ann. Rheum. Dis. 2013, 72, 1182–1187. doi:10.1136/annrheumdis-2012-201669.
  35. Duarte, A.C.; Porter, J.C.; Leandro, M.J. The lung in a cohort of rheumatoid arthritis patients-an overview of different types of involvement and treatment. Rheumatology 2019, 58, 2031–2038. doi:10.1093/rheumatology/kez177.
  36. Bongartz, T.; Nannini, C.; Medina-Velasquez, Y.F.; et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: A population-based study. Arthritis Rheum. 2010, 62, 1583–1591. doi:10.1002/art.27405.
  37. Koduri, G.; Norton, S.; Young, A.; et al. Interstitial lung disease has a poor prognosis in rheumatoid arthritis: Results from an inception cohort. Rheumatology 2010, 49, 1483–1489. doi:10.1093/rheumatology/keq035.
  38. Gravallese, E.M.; Firestein, G.S. Rheumatoid Arthritis—Common Origins, Divergent Mechanisms. N. Engl. J. Med. 2023, 388, 529–542. doi:10.1056/NEJMra2103726.
  39. Boots, A.M.H.; Maier, A.B.; Stinissen, P.; et al. The influence of ageing on the development and management of rheumatoid arthritis. Nat. Rev. Rheumatol. 2013, 9, 604–613. doi:10.1038/nrrheum.2013.92.
  40. Crowson, C.S.; Matteson, E.L.; Myasoedova, E.; et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 2011, 63, 633–639. doi:10.1002/art.30155.
  41. Gomez, C.R.; Boehmer, E.D.; Kovacs, E.J. The aging innate immune system. Curr. Opin. Immunol. 2005, 17, 457–462. doi:10.1016/j.coi.2005.07.013.
  42. Sangha, O. Epidemiology of rheumatic diseases. Rheumatology 2000, 39, 3–12. doi:10.1093/rheumatology/39.suppl_2.3.
  43. van Vollenhoven, R.F. Sex differences in rheumatoid arthritis: More than meets the eye. BMC Med. 2009, 7, 12. doi:10.1186/1741-7015-7-12.
  44. Cutolo, M.; Villaggio, B.; Seriolo, B.; et al. Synovial fluid estrogens in rheumatoid arthritis. Autoimmun Rev. 2004, 3, 193–198. doi:10.1016/j.autrev.2003.08.003.
  45. Wilder, R.L. Hormones, pregnancy, and autoimmune diseases. Ann. N.Y. Acad. Sci. 1998, 840, 45–50. doi:10.1111/j.1749-6632.1998.tb09547.x.
  46. O’Brien, S.M.; Fitzgerald, P.; Scully, P.; et al. Impact of gender and menstrual cycle phase on plasma cytokine concentrations. Neuroimmunomodulation 2007, 14, 84–90. doi:10.1159/000107423.
  47. Smolen, J.S.; Landewé R.B.M.; Bergstra, S.A.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheumatic Dis. 2023, 82, 3–18. doi:10.1136/ard-2022-223356.
  48. Firestein, G.S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 1996, 39, 1781–1790. doi:10.1002/art.1780391103.
  49. Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunological Rev. 2010, 233, 233–255. doi:10.1111/j.0105-2896.2009.00859.x.
  50. Bottini, N.; Firestein GS. Duality of fibroblast-like synoviocytes in RA: Passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 2013, 9, 24–33. doi:10.1038/nrrheum.2012.190.
  51. Smith, M.D.; Barg, E.; Weedon, H.; et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann. Rheum Dis. 2003, 62, 303–307. doi:10.1136/ard.62.4.303.
  52. Soler Palacios, B.; Estrada-Capetillo, L.; Izquierdo, E.; et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. J. Pathol. 2015, 235, 515–526. doi:10.1002/path.4466.
  53. Kemble, S.; Croft, A.P. Critical Role of Synovial Tissue–Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front. Immunol. 2021, 12, 715894. doi: 10.3389/fimmu.2021.715894
  54. Nygaard, G.; Firestein, G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 2020, 16, 316–333. doi:10.1038/s41584-020-0413-5.
  55. Müller-Ladner, U.; Ospelt, C.; Gay, S.; et al. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res. Ther. 2007, 9, 223. doi:10.1186/ar2337.
  56. Imamura, F.; Aono, H.; Hasunuma, T.; et al. Monoclonal expansion of synoviocytes in rheumatoid arthritis. Arthritis Rheum. 1998, 41, 1979–1986. doi:10.1002/1529-0131(199811)41:11<1979::AID-ART13>3.0.CO;2-C.
  57. Matsumoto, S.; Müller-Ladner, U.; Gay, R.E.; et al. Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J. Rheumatol. 1996, 23, 1345–1352.
  58. Lefèvre, S.; Knedla, A.; Tennie, C.; et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 2009, 15, 1414–1420. doi:10.1038/nm.2050.
  59. Müller-Ladner, U.; Kriegsmann, J.; Franklin, B.N.; et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 1996, 149, 1607–1615.
  60. You S, Yoo SA, Choi S, et al. Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 550–555. doi:10.1073/pnas.1311239111.
  61. Lee, D.M.; Kiener, H.P.; Agarwal, S.K.; et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 2007, 315, 1006–1010. doi:10.1126/science.1137306.
  62. Ainola, M.M.; Mandelin, J.A.; Liljeström, M.P.; et al. Pannus invasion and cartilage degradation in rheumatoid arthritis: Involvement of MMP-3 and interleukin-1beta. Clin. Exp. Rheumatol. 2005, 23, 644–650.
  63. Middleton, J.; Americh, L.; Gayon, R.; et al. Endothelial cell phenotypes in the rheumatoid synovium: Activated, angiogenic, apoptotic and leaky. Arthritis Res. Ther. 2004, 6, 60. doi:10.1186/ar1156.
  64. Weber, A.J.; De Bandt, M. Angiogenesis: General mechanisms and implications for rheumatoid arthritis. Joint Bone Spine 2000, 67, 366–383.
  65. Paleolog, E.M. Angiogenesis in rheumatoid arthritis. Arthritis Res. Ther. 2002, 4, S81. doi:10.1186/ar575.
  66. Oppenheimer-Marks, N.; Lipsky, P.E. Adhesion molecules in rheumatoid arthritis. Springer Semin Immunopathol. 1998, 20, 95–114. doi:10.1007/BF00832001.
  67. Schumacher, H.R.; Kitridou, R.C. Synovitis of recent onset. A clinicopathologic study during the first month of disease. Arthritis Rheum. 1972, 15, 465–485. doi:10.1002/art.1780150502.
  68. Ziff, M. Relation of cellular infiltration of rheumatoid synovial membrane to its immune response. Arthritis Rheum. 1974, 17, 313–319. doi:10.1002/art.1780170317.
  69. Walsh, D.A.; Wade, M.; Mapp, P.I.; et al. Focally regulated endothelial proliferation and cell death in human synovium. Am. J. Pathol. 1998, 152, 691–702.
  70. Walsh, D.A.; Rodway, H.A.; Claxson, A. Vascular turnover during carrageenan synovitis in the rat. Lab. Invest. 1998, 78, 1513–1521.
  71. Stevens, C.R.; Blake, D.R.; Merry, P.; et al. A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum. 1991, 34, 1508–1513. doi:10.1002/art.1780341206.
  72. Koch, A.E.; Szekanecz, Z.; Friedman, J.; et al. Effects of thrombospondin-1 on disease course and angiogenesis in rat adjuvant-induced arthritis. Clin. Immunol. Immunopathol. 1998, 86, 199–208. doi:10.1006/clin.1997.4480.
  73. Shigeyama, Y.; Pap, T.; Kunzler, P.; et al. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 2000, 43, 2523–2530. doi:10.1002/1529-0131(200011)43:11<2523::AID-ANR20>3.0.CO;2-Z.
  74. Lotz, M.; Guerne, P.A. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J. Biol. Chem. 1991, 266, 2017–2020. doi:10.1016/S0021-9258(18)52202-X.
  75. Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 2012, 8, 656–664. doi:10.1038/nrrheum.2012.153.
  76. Ishikawa, H.; Hirata, S.; Andoh, Y.; et al. An immunohistochemical and immunoelectron microscopic study of adhesion molecules in synovial pannus formation in rheumatoid arthritis. Rheumatol Int. 1996, 16, 53–60. doi:10.1007/BF01816436.
  77. Ospelt, C. Synovial fibroblasts in 2017. RMD Open. 2017, 3, e000471. doi:10.1136/rmdopen-2017-000471.
  78. Patterson, A.M.; Schmutz, C.; Davis, S.; et al. Differential binding of chemokines to macrophages and neutrophils in the human inflamed synovium. Arthritis Res. 2002, 4, 209–214. doi:10.1186/ar408.
  79. Carmona-Rivera, C.; Carlucci, P.M.; Moore, E.; et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2017, 2, eaag3358. doi:10.1126/sciimmunol.aag3358.
  80. Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 2013, 5, 178ra40. doi:10.1126/scitranslmed.3005580.
  81. Lundberg, K.; Nijenhuis, S.; Vossenaar, E.R.; et al. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res. Ther. 2005, 7, R458–R467. doi:10.1186/ar1697.
  82. Sokolove, J.; Zhao, X.; Chandra, P.E.; et al. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 2011, 63, 53–62. doi:10.1002/art.30081.
  83. Kidd, B.A.; Ho, P.P.; Sharpe, O.; et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res. Ther. 2008, 10, R119. doi:10.1186/ar2523.
  84. Kinloch, A.; Tatzer, V.; Wait, R.; et al. Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Res. Ther. 2005, 7, R1421–R1429. doi:10.1186/ar1845.
  85. Tran, C.N.; Davis, M.J.; Tesmer, L.A.; et al. Presentation of arthritogenic peptide to antigen-specific T cells by fibroblast-like synoviocytes. Arthritis Rheum. 2007, 56, 1497–1506. doi:10.1002/art.22573.
  86. De Rycke, L.; Peene, I.; Hoffman, I.; et al. Rheumatoid factor and anticitrullinated protein antibodies in rheumatoid arthritis: Diagnostic value, associations with radiological progression rate, and extra-articular manifestations. Ann. Rheum Dis. 2004, 63, 1587–1593. doi:10.1136/ard.2003.017574.
  87. Aarvak, T.; Natvig, J.B. Cell-cell interactions in synovitis: Antigen presenting cells and T cell interaction in rheumatoid arthritis. Arthritis Res. 2001, 3, 13–17. doi:10.1186/ar135.
  88. Knight, J.S.; Carmona-Rivera, C.; Kaplan, M.J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol. 2012, 3, 380. doi:10.3389/fimmu.2012.00380.
  89. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. doi:10.1038/nri.2017.105.
  90. Pilling, D.; Akbar, A.N.; Girdlestone, J.; et al. Interferon-beta mediates stromal cell rescue of T cells from apoptosis. Eur. J. Immunol. 1999, 29, 1041–1050. doi:10.1002/(SICI)1521-4141(199903)29:03<1041::AID-IMMU1041>3.0.CO;2-#.
  91. Burger, D.; Dayer, J.M. The role of human T-lymphocyte-monocyte contact in inflammation and tissue destruction. Arthritis Res. 2002, 4, S169–S176. doi:10.1186/ar558.
  92. Brouty-Boyé D.; Pottin-Clémenceau, C.; Doucet, C.; et al. Chemokines and CD40 expression in human fibroblasts. Eur. J. Immunol. 2000, 30, 914–919. doi:10.1002/1521-4141(200003)30:3<914::AID-IMMU914>3.0.CO;2-D.
  93. Viatte, S.; Plant, D.; Han, B.; et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA. 2015, 313, 1645–1656. doi:10.1001/jama.2015.3435.
  94. Ishigaki, K.; Lagattuta, K.A.; Luo, Y.; et al. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat. Genet. 2022, 54, 393–402. doi:10.1038/s41588-022-01032-z.
  95. Hill, J.A.; Southwood, S.; Sette, A.; et al. Cutting edge: The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 2003, 171, 538–541. doi:10.4049/jimmunol.171.2.538.
  96. Gonzalez-Gay, M.A.; Garcia-Porrua, C.; Hajeer, A.H. Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum. 2002, 31, 355–360. doi:10.1053/sarh.2002.32552.
  97. Jawaheer, D.; Thomson, W.; MacGregor, A.J.; et al. “Homozygosity” for the HLA-DR shared epitope contributes the highest risk for rheumatoid arthritis concordance in identical twins. Arthritis Rheum. 1994, 37, 681–686. doi:10.1002/art.1780370511.
  98. McInnes, I.B.; Schett, G. The Pathogenesis of Rheumatoid Arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. doi:10.1056/NEJMra1004965.
  99. Firestein, G.S.; McInnes, I.B. Immunopathogenesis of Rheumatoid Arthritis. Immunity 2017, 46, 183–196. doi:10.1016/j.immuni.2017.02.006.
  100. Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; et al. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015, 18, 433–448. doi:10.1007/s10456-015-9477-2.
  101. Lund-Olesen, K. Oxygen tension in synovial fluids. Arthritis Rheum. 1970, 13, 769–776. doi:10.1002/art.1780130606.
  102. Hanlon, M.M.; McGarry, T.; Marzaioli, V.; et al. Rheumatoid arthritis macrophages are primed for inflammation and display bioenergetic and functional alterations. Rheumatology 2023, 62, 2611–2620. doi:10.1093/rheumatology/keac640.
  103. Möttönen, M.; Isomäki, P.; Saario, R.; et al. Interleukin-10 inhibits the capacity of synovial macrophages to function as antigen-presenting cells. Rheumatology 1998, 37, 1207–1214. doi:10.1093/rheumatology/37.11.1207.
  104. Kinne, R.W.; Stuhlmüller, B.; Burmester, G.R. Cells of the synovium in rheumatoid arthritis Macrophages. Arthritis Res. Ther. 2007, 9, 224. doi:10.1186/ar2333.
  105. Mills, C.D.; Kincaid, K.; Alt, J.M.; et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000, 164, 6166–6173. doi:10.4049/jimmunol.164.12.6166.
  106. Chalan, P.; van den Berg, A.; Kroesen, B.J.; et al. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr. Aging Sci. 2015, 8, 131–146. doi:10.2174/1874609808666150727110744.
  107. Del Rey, M.J.; Valín Á.; Usategui, A.; et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immunity Ageing. 2019, 16, 29. doi:10.1186/s12979-019-0169-4.
  108. Fessler, J.; Husic, R.; Schwetz, V.; et al. Senescent T-Cells Promote Bone Loss in Rheumatoid Arthritis. Front. Immunol. 2018, 9, 95. doi:10.3389/fimmu.2018.00095.
  109. Prieto, L.I.; Baker, D.J. Cellular Senescence and the Immune System in Cancer. Gerontology. 2019, 65, 505–512. doi:10.1159/000500683.
  110. Shimizu, I.; Minamino, T. Cellular senescence in cardiac diseases. J. Cardiol. 2019, 74, 313–319. doi:10.1016/j.jjcc.2019.05.002.
  111. Hamsanathan, S.; Alder, J.K.; Sellares, J.; et al. Cellular Senescence: The Trojan Horse in Chronic Lung Diseases. Am. J. Respir Cell. Mol. Biol. 2019, 61, 21–30. doi:10.1165/rcmb.2018-0410TR.
  112. Baker, D.J.; Petersen, R.C. Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives. J. Clin Invest. 2018, 128, 1208–1216. doi:10.1172/JCI95145.
  113. Gorgoulis, V.; Adams, P.D.; Alimonti, A.; et al. Cellular Senescence: Defining a Path Forward. Cell. 2019, 179, 813–827. doi:10.1016/j.cell.2019.10.005.
  114. Coppé J.P.; Patil, C.K.; Rodier, F.; et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. doi:10.1371/journal.pbio.0060301.
  115. Borghesan, M.; Fafián-Labora, J.; Eleftheriadou, O.; et al. Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. Cell. Rep. 2019, 27, 3956–3971.e6. doi:10.1016/j.celrep.2019.05.095.
  116. Elder, S.S.; Emmerson, E. Senescent cells and macrophages: Key players for regeneration? Open Biol. 2020, 10, 200309. doi:10.1098/rsob.200309.
  117. Burton, D.G.A.; Stolzing, A. Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res. Rev. 2018, 43, 17–25. doi:10.1016/j.arr.2018.02.001.
  118. Lauwerys, B.R.; Hernández-Lobato, D.; Gramme, P.; et al. Heterogeneity of synovial molecular patterns in patients with arthritis. PLoS ONE. 2015, 10, e0122104. doi:10.1371/journal.pone.0122104.
  119. Ouboussad, L.; Burska, A.N.; Melville, A.; et al. Synovial tissue heterogeneity in rheumatoid arthritis and changes with biologic and targeted synthetic therapies to inform stratified Therapy. Front. Med. 2019, 6, 45. doi: 10.3389/fmed.2019.00045
  120. van der Pouw Kraan, T.C.T.M.; van Gaalen, F.A.; Kasperkovitz, P.V.; et al. Rheumatoid arthritis is a heterogeneous disease: Evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum. 2003, 48, 2132–2145. doi:10.1002/art.11096.
  121. Weyand, C.M.; Klimiuk, P.A.; Goronzy, J.J. Heterogeneity of rheumatoid arthritis: From phenotypes to genotypes. Springer Semin Immunopathol. 1998, 20, 5–22. doi:10.1007/BF00831996.
  122. Klimiuk, P.A.; Goronzy, J.J.; Björnsson, J.; et al. Tissue cytokine patterns distinguish variants of rheumatoid synovitis. Am. J. Pathol. 1997, 151, 1311–1319.
  123. Haraoui, B.; Smolen, J.S.; Aletaha, D.; et al. Treating Rheumatoid Arthritis to Target: Multinational recommendations assessment questionnaire. Ann. Rheum Dis. 2011, 70, 1999–2002. doi:10.1136/ard.2011.154179.
  124. Felson, D.T.; Smolen, J.S.; Wells, G.; et al. American College of Rheumatology/European League against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann. Rheum Dis. 2011, 70, 404–413. doi:10.1136/ard.2011.149765.
  125. Wiens, A.; Correr, C.J.; Venson, R.; et al. A systematic review and meta-analysis of the efficacy and safety of adalimumab for treating rheumatoid arthritis. Rheumatol Int. 2010, 30, 1063–1070. doi:10.1007/s00296-009-1111-4.
  126. Nell, V.P.K.; Machold, K.P.; Eberl, G.; et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology 2004, 43, 906–914. doi:10.1093/rheumatology/keh199.
  127. Fraenkel, L.; Bathon, J.M.; England, B.R.; et al. American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheum. 2021, 73, 1108–1123. doi:10.1002/art.41752.
  128. Maetzel, A.; Wong, A.; Strand, V.; et al. Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease-modifying anti-rheumatic drugs. Rheumatology 2000, 39, 975–981. doi:10.1093/rheumatology/39.9.975.
  129. Choi, H.K.; Hernán, M.A.; Seeger, J.D.; et al. Methotrexate and mortality in patients with rheumatoid arthritis: A prospective study. Lancet 2002, 359, 1173–1177. doi:10.1016/S0140-6736(02)08213-2.
  130. Wasko, M.C.M.; Dasgupta, A.; Hubert, H.; et al. Propensity-adjusted association of methotrexate with overall survival in rheumatoid arthritis. Arthritis Rheum. 2013, 65, 334–342. doi:10.1002/art.37723.
  131. Maetzel, A.; Bombardier, C.; Strand, V.; et al. How Canadian and US rheumatologists treat moderate or aggressive rheumatoid arthritis: A survey. J. Rheumatol. 1998, 25, 2331–2338.
  132. Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019, 86, 301–307. doi:10.1016/j.jbspin.2018.07.004.
  133. Schmajuk, G.; Miao, Y.; Yazdany, J.; et al. Identification of risk factors for elevated transaminases in methotrexate users through an electronic health record. Arthritis Care Res. 2014, 66, 1159–1166. doi:10.1002/acr.22294.
  134. Weinblatt, M.E.; Fraser, P. Elevated mean corpuscular volume as a predictor of hematologic toxicity due to methotrexate therapy. Arthritis Rheum. 1989, 32, 1592–1596. doi:10.1002/anr.1780321214.
  135. Kremer, J.M.; Alarcón, G.S.; Weinblatt, M.E.; et al. Clinical, laboratory, radiographic, and histopathologic features of methotrexate-associated lung injury in patients with rheumatoid arthritis: A multicenter study with literature review. Arthritis Rheum. 1997, 40, 1829–1837. doi:10.1002/art.1780401016.
  136. Kanderi, T.; Chan Gomez, J.; Puthenpura, M.M.; et al. Pancytopenia as a Complication of Low-Dose Methotrexate in a Septuagenarian: A Rare Presentation. Cureus 2020, 12, e8492. doi:10.7759/cureus.8492.
  137. Bluett, J.; Sergeant, J.C.; MacGregor, A.J.; et al. Risk factors for oral methotrexate failure in patients with inflammatory polyarthritis: Results from a UK prospective cohort study. Arthritis Res. Ther. 2018, 20, 50. doi:10.1186/s13075-018-1544-9.
  138. O’Dell James, R.; Mikuls Ted, R.; Taylor Thomas, H.; et al. Therapies for Active Rheumatoid Arthritis after Methotrexate Failure. N. Engl. J. Med. 2013, 369, 307–318. doi:10.1056/NEJMoa1303006.
  139. Davis, A.; Robson, J. The dangers of NSAIDs: Look both ways. Br. J. Gen. Pract. 2016, 66, 172–173. doi:10.3399/bjgp16X684433.
  140. Quan, L.; Thiele, G.M.; Tian, J.; et al. The Development of Novel Therapies for Rheumatoid Arthritis. Expert Opin. Ther. Pat. 2008, 18, 723–738. doi:10.1517/13543776.18.7.723.
  141. Gøtzsche, P.C.; Johansen, H.K. Meta-analysis of short-term low dose prednisolone versus placebo and non-steroidal anti-inflammatory drugs in rheumatoid arthritis. BMJ. 1998, 316, 811–818. doi:10.1136/bmj.316.7134.811.
  142. Kirwan, J.R.; Bijlsma, J.W.J.; Boers, M.; et al. Effects of glucocorticoids on radiological progression in rheumatoid arthritis. Cochrane Database Syst Rev. 2007, 2007, CD006356. doi:10.1002/14651858.CD006356.
  143. Wassenberg, S.; Rau, R.; Steinfeld, P.; et al. Very low-dose prednisolone in early rheumatoid arthritis retards radiographic progression over two years: A multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2005, 52, 3371–3380. doi:10.1002/art.21421.
  144. Hoes, J.N.; Jacobs, J.W.G.; Verstappen, S.M.M.; et al. Adverse events of low- to medium-dose oral glucocorticoids in inflammatory diseases: A meta-analysis. Ann. Rheum Dis. 2009, 68, 1833–1838. doi:10.1136/ard.2008.100008.
  145. Scott, D.L. Biologics-Based Therapy for the Treatment of Rheumatoid Arthritis. Clin. Pharmacol. Ther. 2012, 91, 30–43. doi:10.1038/clpt.2011.278.
  146. Nam, J.L.; Winthrop, K.L.; van Vollenhoven, R.F.; et al. Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: A systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum Dis. 2010, 69, 976–986. doi:10.1136/ard.2009.126573.
  147. McInnes, I.B.; O’Dell, J.R. State-of-the-art: Rheumatoid arthritis. Ann. Rheum Dis. 2010, 69, 1898–1906. doi:10.1136/ard.2010.134684.
  148. van Riel, P.L.C.M.; Taggart, A.J.; Sany, J.; et al. Efficacy and safety of combination etanercept and methotrexate versus etanercept alone in patients with rheumatoid arthritis with an inadequate response to methotrexate: The ADORE study. Ann. Rheum Dis. 2006, 65, 1478–1483. doi:10.1136/ard.2005.043299.
  149. Breedveld, F.C.; Weisman, M.H.; Kavanaugh, A.F.; et al. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006, 54, 26–37. doi:10.1002/art.21519.
  150. Donahue, K.E.; Gartlehner, G.; Jonas, D.E.; et al. Systematic review: Comparative effectiveness and harms of disease-modifying medications for rheumatoid arthritis. Ann. Intern. Med. 2008, 148, 124–134. doi:10.7326/0003-4819-148-2-200801150-00192.
  151. Edwards, J.C.W.; Szczepanski, L.; Szechinski, J.; et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2572–2581. doi:10.1056/NEJMoa032534.
  152. van der Heijde, D.; Klareskog, L.; Rodriguez-Valverde, V.; et al. Comparison of etanercept and methotrexate, alone and combined, in the treatment of rheumatoid arthritis: Two-year clinical and radiographic results from the TEMPO study, a double-blind, randomized trial. Arthritis Rheum. 2006, 54, 1063–1074. doi:10.1002/art.21655.
  153. Ruderman, E.M. Overview of safety of non-biologic and biologic DMARDs. Rheumatology 2012, 51, vi37–vi43. doi:10.1093/rheumatology/kes283.
  154. Bongartz, T.; Sutton, A.J.; Sweeting, M.J.; et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006, 295, 2275–2285. doi:10.1001/jama.295.19.2275.
  155. Galloway, J.B.; Hyrich, K.L.; Mercer, L.K.; et al. Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: Updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. Rheumatology 2011, 50, 124–131. doi:10.1093/rheumatology/keq242.
  156. Mohan, A.K.; Coté T.R.; Siegel, J.N.; et al. Infectious complications of biologic treatments of rheumatoid arthritis. Curr. Opin. Rheum. 2003, 15, 179. doi: 10.1097/00002281-200305000-00002
  157. Keane, J.; Gershon, S.; Wise, R.P.; et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 2001, 345, 1098–1104. doi:10.1056/NEJMoa011110.
  158. Listing, J.; Gerhold, K.; Zink, A. The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment. Rheumatology 2013, 52, 53–61. doi:10.1093/rheumatology/kes305.
  159. Amari, W.; Zeringue, A.L.; McDonald, J.R.; et al. Risk of non-melanoma skin cancer in a national cohort of veterans with rheumatoid arthritis. Rheumatology 2011, 50, 1431–1439. doi:10.1093/rheumatology/ker113.
  160. Mariette, X.; Matucci-Cerinic, M.; Pavelka, K.; et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: A systematic review and meta-analysis. Ann. Rheum Dis. 2011, 70, 1895–1904. doi:10.1136/ard.2010.149419.
  161. Tak, P.P. A personalized medicine approach to biologic treatment of rheumatoid arthritis: A preliminary treatment algorithm. Rheumatology. 2012, 51, 600–609. doi:10.1093/rheumatology/ker300.
  162. Chatzidionysiou, K.; Lie, E.; Nasonov, E.; et al. Highest clinical effectiveness of rituximab in autoantibody-positive patients with rheumatoid arthritis and in those for whom no more than one previous TNF antagonist has failed: Pooled data from 10 European registries. Ann. Rheum Dis. 2011, 70, 1575–1580. doi:10.1136/ard.2010.148759.
  163. Isaacs, J.D.; Cohen, S.B.; Emery, P.; et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: A meta-analysis. Ann. Rheum Dis. 2013, 72, 329–336. doi:10.1136/annrheumdis-2011-201117.
  164. Lal, P.; Su, Z.; Holweg, C.T.J.; et al. Inflammation and autoantibody markers identify rheumatoid arthritis patients with enhanced clinical benefit following rituximab treatment. Arthritis Rheum. 2011, 63, 3681–3691. doi:10.1002/art.30596.
  165. Fleischmann, R.; Kremer, J.; Cush, J.; et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 495–507. doi:10.1056/NEJMoa1109071.
  166. Fleischmann, R.; Mysler, E.; Hall, S.; et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): A phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 2017, 390, 457–468. doi:10.1016/S0140-6736(17)31618-5.
  167. van der Heijde, D.; Tanaka, Y.; Fleischmann, R.; et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: Twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 2013, 65, 559–570. doi:10.1002/art.37816.
  168. Kunwar, S.; Collins, C.E.; Constantinescu, F. Baricitinib, a Janus kinase inhibitor, in the treatment of rheumatoid arthritis: A systematic literature review and meta-analysis of randomized controlled trials. Clin. Rheumatol. 2018, 37, 2611–2620. doi:10.1007/s10067-018-4199-7.
  169. Conigliaro, P.; Triggianese, P.; De Martino, E.; et al. Challenges in the treatment of Rheumatoid Arthritis. Autoimmunity Rev. 2019, 18, 706–713. doi:10.1016/j.autrev.2019.05.007.
  170. Roodenrijs, N.M.T.; de Hair, M.J.H.; van der Goes, M.C.; et al. Characteristics of difficult-to-treat rheumatoid arthritis: Results of an international survey. Ann. Rheum. Dis. 2018, 77, 1705–1709. doi:10.1136/annrheumdis-2018-213687.
  171. Nagy, G.; Roodenrijs, N.M.; Welsing, P.M.; et al. EULAR definition of difficult-to-treat rheumatoid arthritis. Ann. Rheum. Dis. 2021, 80, 31–35. doi:10.1136/annrheumdis-2020-217344.
  172. Ranganath, V.K.; Maranian, P.; Elashoff, D.A.; et al. Comorbidities are associated with poorer outcomes in community patients with rheumatoid arthritis. Rheumatology 2013, 52, 1809–1817. doi:10.1093/rheumatology/ket224.
  173. Gremese, E.; Carletto, A.; Padovan, M.; et al. Obesity and reduction of the response rate to anti-tumor necrosis factor α in rheumatoid arthritis: An approach to a personalized medicine. Arthritis Care Res. 2013, 65, 94–100. doi:10.1002/acr.21768.
  174. He, Y.; Ge, C.; Moreno-Giró À.; et al. A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat. Commun. 2023, 14, 691. doi:10.1038/s41467-023-36257-x.
  175. Karami, J.; Aslani, S.; Tahmasebi, M.N.; et al. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol. Cell. Biol. 2020, 98, 171–186. doi:10.1111/imcb.12311.
  176. Doody, K.M.; Bottini, N.; Firestein, G.S. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 2017, 9, 479–492. doi:10.2217/epi-2016-0151.
  177. Leblond, A.; Allanore, Y.; Avouac, J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmunity Rev. 2017, 16, 594–601. doi:10.1016/j.autrev.2017.04.005.
  178. Mao, X.; Yan, X.; Li, C.; et al. Extensive preclinical evaluation of combined mangiferin and glycyrrhizic acid for restricting synovial neovascularization in rheumatoid arthritis. Chin. Med. 2023, 18, 156. doi:10.1186/s13020-023-00863-0.
  179. Wang, Y.; Wu, H.; Deng, R. Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur. J. Pharmacol. 2021, 910, 174500. doi:10.1016/j.ejphar.2021.174500.
  180. Kelly, S.; Bombardieri, M.; Humby, F.; et al. Angiogenic gene expression and vascular density are reflected in ultrasonographic features of synovitis in early rheumatoid arthritis: An observational study. Arthritis Res. Ther. 2015, 17, 58. doi:10.1186/s13075-015-0567-8.

Most read articles by the same author(s)