
Downloads
Download




This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Photocatalytic Conversion of Biomass over Modified Graphitic Carbon Nitride Catalysts for Environmental Sustainability—A Review
Guangsheng Zhu 1, Yajie Shu 1,*, and Ming Zhou 2,*
1 National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
2 School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia
* Correspondence: shuyj@mail3@sysu.edu.cn (Y.S.); ming.zhou@griffith.edu.au (M.Z.)
Received: 18 November 2024; Revised: 29 January 2025; Accepted: 15 February 2025; Published: 20 February 2025
Abstract: Solar-driven photocatalytic transformations of biomass-derived organic wastes into high-value chemicals and fuels is a crucial and promising strategy for reducing pollution while simultaneously utilizing renewable sources and generating valuable products, contributing to a cleaner and more sustainable environment. However, its efficient conversion remains challenging due to its complex macromolecular structure and the demand for environmentally sustainable processing methods. Graphitic carbon nitride (g-C3N4) has emerged as a promising photocatalyst for biomass conversion owing to its unique electronic properties, intrinsic stability and structural tunability. This review comprehensively summarizes recent advancements in the modification of gC3N4-based photocatalysts for photocatalytic biomass conversion, focusing on strategies including elemental doping, defect engineering, and heterojunction construction. These modifications have enabled efficient conversion of various biomass feedstocks, from simple monosaccharides to complex cellulose structures, while facilitating simultaneous environmental pollution remediation. Furthermore, this review analyses the challenges in improving g-C3N4-based photocatalysts for biomass photo-reforming and improving the conversion of complex biomass substrates. Finally, by critically evaluating current strategies and highlighting future research directions, this review provides insights for designing advanced g-C3N4-based photocatalysts for biomass conversion and promotes environmental sustainability.
Keywords:
biomass graphitic carbon nitride heterojunction photocatalysts environmental sustainability
References
- Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5424.
- Liao, Y.; Koelewijn, S.-F.; Van den Bossche, G.; Aelst, J.V.; Van den Bosch, S.; Renders, T.; Navare, K.; Nicolaï, T.; Aelst, K.V.; Maesen, M.; et al. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 2020, 367, 1385–1390.
- Wang, T.; Zhou, T.; Li, C.; Song, Q.; Zhang, M.; Yang, H. Development status and prospects of biomass energy in China. Energies 2024, 17, 4484.
- Zhao, H.; Liu, J.; Zhong, N.; Larter, S.; Li, Y.; Kibria, M.G.; Su, B.L.; Chen, Z.; Hu, J. Biomass photoreforming for hydrogen and value‐added chemicals co‐production on hierarchically porous photocatalysts. Adv. Energy Mater. 2023, 13, 2300257.
- Ghalta, R.; Chauhan, A.; Srivastava, R. Heterogeneous photocatalytic valorization of lignocellulose biomass for chemical and fuel production via reductive pathways. Sustain. Energy Fuels 2024, 8, 3205–3246.
- Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198–6223.
- Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 2009, 100, 2580–2587.
- Zhao, H.; Li, C.-F.; Yu, X.; Zhong, N.; Hu, Z.-Y.; Li, Y.; Larter, S.; Kibria, M.; Hu, J. Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Appl. Catal. B 2022, 302, 120872.
- Song, W.; Liu, H.; Zhang, J.; Sun, Y.; Peng, L. Understanding Hβ zeolite in 1,4-dioxane efficiently converts hemicellulose-related sugars to furfural. ACS Catal. 2022, 12, 12833–12844.
- Kumar, A.; Ghalta, R.; Bal, R.; Srivastava, R. Photocatalytic β-O-4 bond cleavage in lignin models and native lignin through CdS integration on titanium oxide photocatalyst under visible light irradiation. Appl. Catal. B. 2024, 359, 124494.
- Lancefield, C.S.; Westwood, N.J. The synthesis and analysis of advanced lignin model polymers. Green Chem. 2015, 17, 4980–4990.
- Pattnaik, F.; Tripathi, S.; Patra, B.; Nanda, S.; Kumar, V.; Dalai, A.; Naik, S. Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: A review. Environ. Chem. Lett. 2021, 19, 4119–4136.
- Kuehnel, M.; Reisner, E. Solar Hydrogen Generation from Lignocellulose. Angew. Chem. Int. Ed. 2018, 57, 3290–3296.
- Sun, L.; Luo, N. Catalyst design and structure control for photocatalytic refineries of cellulosic biomass to fuels and chemicals. J. Energy Chem. 2024, 94, 102–127.
- Qiu, J.; Li, M.; Ding, M.; Yao, J. Cellulose tailored semiconductors for advanced photocatalysis. Renew. Sustain. Energy Rev. 2022, 154, 111820.
- Chan, Y.H.; Loh, S.K.; Chin, B.L.F.; Yiin, C.L.; How, B.S.; Cheah, K.W.; Wong, M.K.; Loy, A.C.M.; Gwee, Y.L.; Lo, S.L.Y.; et al. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects. Chem. Eng. J. 2020, 397, 125406.
- Lopez, G.; Santamaria, L.; Lemonidou, A.; Zhang, S.; Wu, C.; Sipra, A.T.; Gao, N. Hydrogen generation from biomass by pyrolysis. Nat. Rev. Method. Prim. 2022, 2, 21.
- Stevens, J.C.; Das, L.; Mobley, J.K.; Asare, S.O.; Lynn, B.C.; Rodgers, D.W.; Shi, J. Understanding laccase–ionic liquid iInteractions toward biocatalytic lignin conversion in aqueous ionic liquids. ACS Sustain. Chem. Eng. 2019, 7, 15928– 15938.
- Qin, Y.-Z.; Zong, M.-H.; Lou, W.-Y.; Li, N. Biocatalytic upgrading of 5-hydroxymethylfurfural (HMF) with levulinic acid to HMF Levulinate in biomass-derived solvents. ACS Sustain. Chem. Eng. 2016, 4, 4050–4054.
- Lee, D.; Nam, H.; Won Seo, M.; Hoon Lee, S.; Tokmurzin, D.; Wang, S.; Park, Y.-K. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem. Eng. J. 2022, 447, 137501.
- Wang, H.; Liu, S.; Wang, H.; Chao, J.; Li, T.; Ellis, N.; Duo, W.; Bi, X.; Smith, K.J. Thermochemical conversion of biomass to fuels and chemicals: A review of catalysts, catalyst stability, and reaction mechanisms. Catal. Rev. 2023, 67, 57–129.
- Duan, H.; Wang, F. Opportunities for electrocatalytic biomass valorization. Chem. Catal. 2022, 2, 641–643.
- Lu, Y.; Yang, L.; Jiang, Y.; Yuan, Z.; Wang, S.; Zou, Y. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion. Chin. J. Catal. 2023, 53, 153–160.
- Aboagye, D.; Djellabi, R.; Medina, F.; Contreras, S. Radical‐mediated photocatalysis for lignocellulosic biomass conversion into value‐added chemicals and hydrogen: Facts, opportunities and challenges. Angew. Chem. Int. Ed. 2023, 62, e202301909.
- Huang, Z.; Luo, N.; Zhang, C.; Wang, F. Radical generation and fate control for photocatalytic biomass conversion. Nat. Rev. Chem. 2022, 6, 197–214.
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
- Wu, Y.; Wang, H.; Li, H.; Han, X.; Zhang, M.; Sun, Y.; Fan, X.; Tu, R.; Zeng, Y.; Xu, C.C.; et al. Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renew. Energy 2022, 196, 462–481.
- Tawalbeh, M.; Al-Othman, A.; Salamah, T.; Alkasrawi, M.; Martis, R.; El-Rub, Z.A. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. J. Environ. Manag. 2021, 299, 113597.
- Chen, H.; Wan, K.; Zheng, F.; Zhang, Z.; Zhang, Y.; Long, D. Mechanism insight into photocatalytic conversion of lignin for valuable chemicals and fuels production: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 147, 111217.
- You, Y.; Chen, S.; Zhao, J.; Lin, J.; Wen, D.; Sha, P.; Li, L.; Bu, D.; Huang, S. Rational design of S‐scheme heterojunction toward efficient photocatalytic cellulose reforming for H2 and formic acid in pure water. Adv. Mater. 2023, 36, 2307962.
- Wang, M.; Zhou, H.; Wang, F. Photocatalytic production of syngas from biomass. Acc. Chem. Res. 2023, 56, 1057–1069.
- Buzzetti, L.; Crisenza, G.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730– 3747.
- Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B 2020, 262, 118281.
- Li, J.; Zhang, Z.; Cui, W.; Wang, H.; Cen, W.; Johnson, G.; Jiang, G.; Zhang, S.; Fong, F. The Spatially Oriented Charge Flow and Photocatalysis Mechanism on Internal van der Waals Heterostructures Enhanced g-C3N4. ACS Catal. 2018, 8, 8376–8385.
- Cui, W.; Chen, L.; Sheng, J.; Li, J.; Wang, H.; Dong, X.; Zhou, Y.; Sun, Y.; Dong, F. The pivotal roles of spatially separated charge localization centers on themolecules activation and photocatalysis mechanism. Appl. Catal. B 2020, 262, 118251.
- Tang, J.; Zhu, J.; Liu, L.; Xia, L.; He, Z.; Wang, D.; Xu, X.; Song, S. Coupling urchin-like TiO2 nanospheres with nitrogen and sulfur co-doped graphene quantum dots for visible-light-induced degradation of toluene. Chem. Eng. J. 2024, 482, 148813.
- Li, Z.; Wang, S.; Wu, J.; Zhou, W. Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew. Sustain. Energy Rev. 2022, 156, 111980.
- Wu, C.; Huang, W.; Liu, H.; Lv, K.; Li, Q. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Appl. Catal. B 2023, 330, 122653.
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80.
- Yue, J.; Yang, H.; Liu, C.; Wang, S.; Kang, X. In-plane electron transfer dominated carbon nitride for high-efficiency quasi-homogeneous photochemical synthesis of hydrogen peroxide. Chem. Eng. J. 2024, 497, 154683.
- Abdellatif, H.; Zhang, G.; Wang, X.; Xie, D.; Irvine, J.; Ni, J.; Ni, C. Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units. Chem. Eng. J. 2019, 370, 874– 884.
- Xu, C.; Liu, H.; Wang, D.; Li, D.; Zhang, Y.; Liu, X.; Huang, J.; Wu, S.; Fan, D.; Liu, H.; et al. Molten-salt assisted synthesis of polymeric carbon nitride-based photocatalyst for enhanced photocatalytic activity under green light irradiation. Appl. Catal. B 2023, 334, 122835.
- Yang, H.; Zhou, Y.; Wang, Y.; Hu, S.; Wang, B.; Liao, Q.; Li, H.; Bao, J.; Ge, G.; Jia, S. Three-dimensional flower-like phosphorus-doped g-C3N4 with a high surface area for visible-light photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 16485–16494.
- Aggarwal, M.; Basu, S.; Shetti, N.P.; Nadagouda, M.N.; Kwon, E.E.; Park, Y.-K.; Aminabhavi, T.M. Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4). Chem. Eng. J. 2021, 425, 131402.
- Chen, M.; Sun, M.; Cao, X.; Wang, H.; Xia, L.; Jiang, W.; Huang, M.; He, L.; Zhao, X.; Zhou, Y. Progress in preparation, identification and photocatalytic application of defective g-C3N4. Coord. Chem. Rev. 2024, 51, 215849.
- Huang, Q.-S.; Li, Q.; Chu, C.; Liu, Q.; Li, Z.; Mao, S. Synergetic regulation of electronic structure of graphitic carbon nitride through phosphorus and carbon co-doping for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 2024, 428, 149155.
- You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production. Appl. Catal. B 2023, 321, 121941.
- Guo, L.; Gao, J.; Huang, Q.; Wang, X.; Li, Z.; Li, M.; Zhou, W. Element engineering in graphitic carbon nitride photocatalysts. Renew. Sust. Energ. Rev. 2024, 199, 114482.
- Zhao, D.; Guan, X.; Shen, S. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review. Environ. Chem. Lett. 2022, 20, 3505–3523.
- Luo, M.; Jiang, G.; Yu, M.; Yan, Y.; Qin, Z.; Li, Y.; Zhang, Q. Constructing crystalline homophase carbon nitride Sscheme heterojunctions for efficient photocatalytic hydrogen evolution. J. Mater. Sci. Technol. 2023, 161, 220–232.
- Akinaga, Y.; Kawawaki, T.; Kameko, H.; Yamazaki, Y.; Yamazaki, K.; Nakayasu, Y.; Kato, K.; Tanaka, Y.; Hanindriyo, A.T.; Takagi, M.; et al. Metal single‐atom cocatalyst on carbon nitride for the photocatalytic hydrogen evolution reaction: Effects of metal species. Adv. Funct. Mater. 2023, 33, 2303321.
- Li, K.; Lin, Y.-Z.; Wang, K.; Wang, Y.; Zhang, Y.; Zhang, Y.; Liu, F.-T. Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride. Appl. Catal. B 2020, 268, 118402.
- Liu, Y.; He, M.; Guo, R.; Fang, Z.; Kang, S.; Ma, Z.; Dong, M.; Wang, W.; Cui, L. Ultrastable metal-free near-infrareddriven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6. Appl. Catal. B 2020, 260, 118137.
- Zhang, X.; Yu, L.; Zhuang, C.; Peng, T.; Li, R.; Li, X. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2013, 4, 162– 170.
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.
- Ding, L.-L.; Ge, J.-P.; Zhou, W.-Q.; Gao, J.-P.; Zhang, Z.-Y.; Xiong, Y. Nanogold-functionalized g-C3N4 nanohybrids for sensitive impedimetric immunoassay of prostate-specific antigen using enzymatic biocatalytic precipitation. Biosens. Bioelectron. 2016, 85, 212–219.
- Liu, R.; Lin, J.; Zhu, L.; Zhang, X.; Li, Y.; Pan, H.; Kong, L.; Zhu, S.; Wang, J. Synergistic effect of donor-acceptor structure and built-in electric field in hollow-spherical carbon nitride homojunction towards effective charge transfer and excellent photocatalytic hydrogen evolution performance. Chem. Eng. J. 2024, 484, 149507.
- Tang, C.; Cheng, M.; Lai, C.; Li, L.; Yang, X.; Du, L.; Zhang, G.; Wang, G.; Yang, L. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coord. Chem. Rev. 2023, 474, 214846.
- Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B 2017, 217, 388–406.
- Ma, J.; Li, X.; Li, Y.; Jiao, G.; Su, H.; Xiao, D.; Zhai, S.; Sun, R. Single-atom zinc catalyst for co-production of hydrogen and fine chemicals in soluble biomass solution. Adv. Powder Mater. 2022, 1, 100058.
- Wang, E.; Mahmood, A.; Chen, S.-G.; Sun, W.; Muhmood, T.; Yang, X.; Chen, Z. Solar-driven photocatalytic reforming of lignocellulose into H2 and value-added biochemicals. ACS Catal. 2022, 12, 11206–11215.
- Huang, Z.; Sun, P.; Liu, H.; Ren, C.; Lin, X.; Shen, M.; Li, Z.; Xu, X. Efficient selective cleavage of C−C bonds in lignin under visible light enabled by the Fe-doped mesoporous graphitic carbon nitride photocatalyst. Ind. Crop. Prod. 2024, 222, 119642.
- Wang, J.; Zhao, Q.; Kumar, P.; Zhao, H.; Jing, L.; Di Tommaso, D.; Crespo-Otero, R.; Kibria, M.G.; Hu, J. Solar-driven cellulose photorefining into arabinose over xxygen-doped carbon nitride. ACS Catal. 2024, 14, 3376–3386.
- Liu, K.; Ma, J.; Yang, X.; Liu, Z.; Li, X.; Zhang, J.; Cui, R.; Sun, R. Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem. Eng. J. 2022, 437, 135232.
- LeBlanc, G.; Chen, G.; Gizzie, E.A.; Jennings, G.K.; Cliffel, D.E. Enhanced photocurrents of photosystem I films on pdoped silicon. Adv. Mater. 2012, 24, 5959–5962.
- Yang, X.; Ma, J.; Sun, S.; Liu, Z.; Sun, R. K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green Chem. 2022, 24, 2104–2113.
- Gao, H.; Yan, S.; Wang, J.; Huang, Y.A.; Wang, P.; Li, Z.; Zou, Z. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077.
- Tahir, M.; Sherryna, A.; Khan, A.A.; Madi, M.; Zerga, A.Y.; Tahir, B. Defect engineering in graphitic carbon nitride nanotextures for energy efficient solar fuels production: A review. Energy Fuels 2022, 36, 8948–8977.
- Maarisetty, D.; Baral, S.S. Defect engineering in photocatalysis: Formation, chemistry, optoelectronics, and interface studies. J. Mater. Chem. A 2020, 8, 18560–18604.
- Zou, R.; Chen, Z.; Zhong, L.; Yang, W.; Li, T.; Gan, J.; Yang, Y.; Chen, Z.; Lai, H.; Li, X.; et al. Nanocellulose‐assisted molecularly engineering of nitrogen deficient graphitic carbon nitride for selective biomass photo‐xxidation. Adv. Funct. Mater. 2023, 33, 2301311.
- Zhao, C.; Shi, C.; Li, Q.; Wang, X.; Zeng, G.; Ye, S.; Jiang, B.; Liu, J. Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Mater. Today Energy 2022, 24, 100926.
- Bai, X.; Hou, Q.; Qian, H.; Nie, Y.; Xia, T.; Lai, R.; Yu, G.; Laiq Ur Rehman, M.; Xie, H.; Ju, M. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl. Catal. B 2022, 303, 120895.
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T. Alkaliassisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible‐lightdriven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.
- Chen, C.-C.; Tsai, D.-L.; Liu, H.-T.; Wu, J.-J. Carbon Vacancy-Modified Carbon Nitride Allotropic Composite for Solar Hydrogen Generation Coupled with Selective Oxidation of 5-Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2023, 11, 6435–6444.
- Du, X.; Zhang, H.; Yao, T.; Dong, S.; Jing, L.; Hu, J. Cyano and defective co-modified carbon nitride for optimized photoreformation of glucose to arabinose. Surf. Interfaces 2024, 48, 104283.
- Cao, M.; Shao, S.; Wei, W.; Love, J.; Yue, Z.; Zhang, Y.; Zhang, X.; Xue, Y.; Yu, J.; Fan, X. Engineering multiple defect sites on ultrathin graphitic carbon nitride for efficiently photocatalytic conversion of lignin into monomeric aromatics via selective C–C bond scission. Appl. Surf. Sci. 2024, 643, 158653.
- Mitchell, E.; Law, A.; Godin, R. Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods. J. Photochem. Photobiol. C Photochem. Rev. 2021, 49, 100453.
- Deng, A.; Sun, Y.; Gao, Z.; Yang, S.; Liu, Y.; He, H.; Zhang, J.; Liu, S.; Sun, H.; Wang, S. Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy 2023, 108, 108228.
- Uekert, T.; Kasap, H.; Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 2019, 141, 15201–15210.
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.
- Ling, W.; Ma, J.; Hong, M.; Sun, R. Enhance photocatalytic CO2 reduction and biomass selective oxidation via sulfur vacancy-enriched S-scheme heterojunction of MoS2@GCN. Chem. Eng. J. 2024, 493, 152729.
- Wu, G.; Wu, Z.; Liu, L.; Cui, W.; Du, D.; Xue, Y. NIR light responsive MoS2 nanomaterials for rapid sterilization: Optimum photothermal effect via sulfur vacancy modulation. Chem. Eng. J. 2022, 427, 132007.
- Xu, X.; Dai, S.; Xu, S.; Zhu, Q.; Li, Y. Efficient photocatalytic cleavage of lignin models by a soluble perylene diimide/carbon nitride S‐scheme heterojunction. Angew. Chem. Int. Ed. 2023, 62, e202309066.
- Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Floatable S‐scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chin. J. Catal. 2023, 52, 239–251.
- Zhang, J.; Yu, J.; Yang, C.; Li, S. Recent progress on S-scheme heterojunction strategy enabling polymer carbon nitrides C3N4 and C3N5 enhanced photocatalysis in energy conversion and environmental remediation. Curr. Opin. Chem. Eng. 2024, 45, 101040.
- Ding, Y.; Cao, Y.; Chen, D.; Li, J.; Wu, H.; Meng, Y.; Huang, J.; Yuan, J.; Su, Y.; Wang, J.; et al. Relay photo/thermal catalysis enables efficient cascade upgrading of sugars to lactic acid: Mechanism study and life cycle assessment. Chem. Eng. J. 2023, 452, 139687.
- Chen, Y.; Qu, Y.; Xu, P.; Zhou, X.; Sun, J. Insight into the influence of donor-acceptor system on graphitic carbon nitride nanosheets for transport of photoinduced charge carriers and photocatalytic H2 generation. J. Colloid Interface Sci. 2021, 601, 326–337.
- Qian, Y.; Han, Y.; Zhang, X.; Yang, G.; Zhang, G.; Jiang, H.-L. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.
- Lan, Z.A.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K.A.I.; Wang, X. Reducing the exciton binding energy of donor– acceptor‐based conjugated polymers to oromote charge‐induced reactions. Angew. Chem. Int. Ed. 2019, 58, 10236–10240.
- Ou, H.; Chen, X.; Lin, L.; Fang, Y.; Wang, X. Biomimetic donor–acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation. Angew. Chem. Int. Ed. 2018, 57, 8729–8733.
- Liu, J.; Zou, R.; Zhang, H.; Song, Y.; Liu, Y.; Yang, S.; Xia, R.; Iwuoha, E.I.; Feleni, U.; Admassie, S.; Peng, X. Enhanced π-electron transport in graphitic carbon nitride (g-C3N4) by constructing biochar-welded donor-acceptor (D-A) configuration for photocatalytic conversion of biomass. Appl. Catal. B 2024, 357, 124312.
- Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 quantum dots for lighting and displays: Roomtemperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
- Ling, W.; Ma, J.; Liu, Z.; Cui, R.; Zhang, J.; Li, X.; Hong, M.; Sun, R. Enhancing biomass oxidation with carbon nitride nanosheets ring inserted on CI Pigment Yellow 53 photocatalysts for simultaneous CO and lactic acid production. Chem. Eng. J. 2023, 475, 146117.
- Jiang, Z.; Wang, B.; Yu, J.C.; Wang, J.; An, T.; Zhao, H.; Li, H.; Yuan, S.; Wong, P.K. AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy 2018, 46, 234–240.
- Hu, A.; Ye, J.; Ren, G.; Qi, Y.; Chen, Y.; Zhou, S. Metal‐free semiconductor‐based bio‐nano hybrids for sustainable CO2to‐CH4Conversion with high quantum yield. Angew. Chem. Int. Ed. 2022, 61, e202206508.
- Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.
- Ye, J.; Chen, Y.; Gao, C.; Wang, C.; Hu, A.; Dong, G.; Chen, Z.; Zhou, S.; Xiong, Y. Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic–abiotic hybrid photocatalytic system. Angew. Chem. Int. Ed. 2022, 61, e202213244.
- Hou, M.; Wang, R.; Wu, X.; Zhang, Y.; Ge, J.; Liu, Z. Synthesis of lutein esters by using a reusable lipase-Pluronic conjugate as the catalyst. Catal. Lett. 2015, 145, 1825–1829.
- Xu, M.; Tremblay, P.-L.; Jiang, L.; Zhang, T. Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chem. 2019, 21, 2392–2400.
- Wang, J.; Xu, M.; Tremblay, P.-L.; Zhang, T. Improved polyhydroxybutyrate production by Cupriavidus necator and the photocatalyst graphitic carbon nitride from fructose under low light intensity. Int. J. Biol. Macromol. 2022, 203, 526– 534.
- Nasir, M.S.; Yang, G.; Ayub, I.; Wang, S.; Wang, L.; Wang, X.; Yan, W.; Peng, S.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl. Catal. B 2019, 257, 117855.
- Chen, F.; Wu, C.; Zheng, G.; Qu, L.; Han, Q. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects. Chin. J. Catal. 2022, 43, 1216–1229.
- Ma, J.; Liu, K.; Yang, X.; Jin, D.; Li, Y.; Jiao, G.; Zhou, J.; Sun, R. Recent advances and challenges in photoreforming of biomass‐derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride photocatalysts. ChemSusChem 2021, 14, 4903–4922.
- Qiang, G.; Ansari, M.; Sun, Z.; Elangovan, S. Bioactive Molecules from Lignocellulose‐Derived Platform Chemicals. Adv. Synth. Catal. 2024, 366, 4805–4834.
- Tiwari, M.S.; Wagh, D.; Dicks, J.S.; Keogh, J.; Ansaldi, M.; Ranade, V.V.; Manyar, H.G. Solvent free upgrading of 5hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate using tin exchanged tungstophosphoric acid supported on K-10 catalyst. ACS Org. Inorg. Au 2022, 3, 27–34.
- Lucarelli, C.; Vaccari, A. Examples of heterogeneous catalytic processes for fine chemistry. Green Chem. 2011, 13, 1941– 1949.
- Blaser, H.-U.; Studer, M. The role of catalysis for the clean production of fine chemicals. Appl. Catal. A 1999, 189, 191– 204.