
Applied Mathematics and Statistics

Article

Adaptive Resilience via Probabilistic Automaton: Safeguard-
ing Multi-Agent Systems from Leader Missing Attacks
Kuanxiang Wang 1 and Xin Gong 2,∗

1 The School of Information Science and Engineering, East China University of Science and Technology,
Shanghai 200237, China

2 The School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China
∗ Correspondence: xingong@seu.edu.cn; Tel.: +86-185-9806-0508
Received: 26 August 2024; Revised: 3 October 2024; Accepted: 18 October 2024; Published: 25 October 2024

Abstract: The resilience of leader-following structures has been a hotspot in both academic and industrial research.
Existing studies mainly focus on maintaining follower coherence, usually assuming that the leader can always func-
tion properly. However, these studies neglect the risk of system paralysis if the leader is compromised. To resolve
this problem, this paper leverages probabilistic automata grammar reasoning to investigate how followers can gradu-
ally infer their operational rules within the system over time. First, a grammatical inference module is implemented
on the followers to enable them to deduce their rules once they receive commands from the leader. Then, this paper
proposes three probabilistic automata reasoning methods for this inference: the Algorithm for Learning Regular
Grammars with Inference Assistance (ALERGIA), Distinguished String Automata Inference (DSAI), and Minimum
Divergent Inference (MDI). By using these methods, a follower can reason about deterministic finite automata
from multiple commands issued by the leader, which are then utilized to construct deterministic probabilistic finite
automata for representing the follower’s rules. Finally, several examples are provided to validate the correctness of
these reasoning methods and compare their efficiency in learning probabilistic automata. The results indicate that
all three methods achieve an accuracy of 98.535% in learning the correct automata transformation function, and
ALERGIA runs slightly faster. These findings suggest that even if the leader is compromised, the agent can still
perform tasks autonomously using the inferred rules, thereby avoiding system paralysis.

Keywords: adaptive resilience; probabilistic automaton; leader-following multi-agent systems; leader missing
attacks

1. Introduction

In recent years, multi-agent systems (MASs) have been widely used in transportation, energy, healthcare, and
other critical domains [1–5], and the problem of system paralysis caused by leader missing attacks in this system
have received much attention [6]. In the current highly interconnected and distributed environment, it is increasingly
important to improve the resilience of MASs [7]. Compared to single-agent systems, MASs have advantages
in robustness, parallel processing, and adaptability to dynamic task requirements and environmental changes,
achieving superior performance in complex and evolving scenarios [8–10]. The leader-following architecture of
MASs has become a research hotspot, particularly the consensus issues between the leader and followers caused
by agent failures or communication link disruptions. Several state feedback protocols based on adaptive control
and H∞ control have been proposed to address sensor and actuator failures in leader-following MASs, where
sensor failure refers to deviations in transmitted data from the ideal [11]. Meanwhile, a distributed observer and a
proportional-integral control strategy have been developed to resolve multi-Euler-Lagrange control problems in
leader-following MASs, particularly under communication link failures and uncertainties in external disturbances
[12]. Additionally, a two-layer control approach has been devised, which adopts a trust node policy and a flexible
network topology to realize flexible output time-varying formation tracking in MASs, especially in the face of
Byzantine attacks on followers, and this approach also integrates virtual and cyber-physical layers [13]. However,
these studies do not consider scenarios where the leader is completely disabled. If the leader fails to function
properly due to an attack, the entire system may crash. Therefore, it is necessary to design resilient systems that
can maintain overall situational awareness and functionality, even under the condition of individual component
failures and partial knowledge distribution. As shown in Figure 1, in an air-sea coordinated combat system, if the

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://creativecommons.org/licenses/by/4.0/

Appl. Math. Stat. 2024, 1, x.

command aircraft, as the highest leader of the coordinated system, is compromised by a malicious attack and loses
its capability to make decisions, coordinate, and communicate, the entire system is at risk of paralysis. This leads to
a critical question: How should the followers operate without guidance from the leaders and how can they continue
to complete the remaining tasks?

Figure 1. The multi-agent system for air-sea coordinated combat is based on a leader-following structure, comprising
command aircraft, reconnaissance aircraft, fighter jet, and aircraft carrier.

There are two main methods to address the issue of leader missing attacks in MASs: Followers either reason
about their own rules based on leader commands or re-elect the leader. A secure and resilient supervisory control
framework that integrates a learning module and a syntactic reasoning mechanism has been developed for cyber-
physical systems. This framework allows followers to gradually infer their own rules over time as leaders transmit
commands, thereby ensuring the resumption of operations in the case of coordinator failure [6]. Meanwhile, the
Dyna-Delayed Q-learning algorithm has been proposed, which, when combined with distributed reinforcement
learning and syntactic reasoning, can improve the resilience of MASs and optimize decision-making after coordinator
failure [14]. Additionally, a leader-following cycle strategy has been proposed to resolve the leader error scoring
problem, and it assigns an equal distribution of time slices to each follower without qualification management [15].
These studies suggest that the effectiveness of rule inference relies on efficient information exchange and it is crucial
for followers to quickly deduce their own rules with limited commands in real-world environments.

In recent years, the rapid development of natural language rule-based reasoning has made probabilistic automata
a key method for dealing with linguistic patterns and uncertainty [16–18]. Probabilistic automata enable researchers
to effectively capture and manage language randomness during syntactic analysis, semantic understanding, and
language generation [19, 20]. This method is particularly suitable for reasoning about and predicting complex
linguistic structures, and it allows for more accurate modeling and inference of linguistic rules and their variations,
thereby substantially improving the accuracy of comprehension and generation in natural language processing tasks.
In MASs where the leader issues commands to followers through feature language [14], sufficient transmission
commands allow followers to efficiently infer the rules they follow within the system. As previously mentioned,
ensuring a MAS to properly function after the sudden and complete failure of the leader in a leader-following
structure remains a significant challenge. Drawing on existing research, our study uses the deterministic probabilistic
finite state automaton (DPFA) syntactic reasoning to infer the rules followed by the followers. Meanwhile, the
follower is allowed to infer its own rules by reasoning from multiple commands issued by the leader. This is
realized by constructing a deterministic finite frequency automaton (DFFA) that represents the follower’s rules using
folding and merging techniques, as well as the Algorithm for Learning Regular Grammars with Inference Assistance
(ALERGIA) [21], Distinguishing Strings Automata Inference (DSAI), and Minimum Divergence Inference (MDI)
inference methods. Then, these frequency automata are employed to construct probabilistic automata.

The above discussion indicates that the system collapse problem due to leader missing attacks has not been
well addressed in previous studies. In this study, this problem is resolved by establishing the agent’s rules as a
DPFA and applying various probabilistic automata reasoning methods to infer the agent’s own rules. The main

2 of 18

Appl. Math. Stat. 2024, 1, x.

contributions of this study are as follows:

(1) Construction of a probabilistic finite state automaton for follower rules: Based on the insights from reference
[14], the follower’s rule model is established and further extended to a probabilistic finite state automaton to
better accommodate dynamic changes. This extension improves the system’s ability to manage uncertainty
and makes it more stable in complex environments.

(2) Three inference methods for leader missing attacks: This study proposes three inference methods, namely
ALERGIA, DSAI, and MDI, which enable followers to autonomously infer and execute operational rules when
faced with leader-missing attacks. These methods ensure that the system maintains continuity and stability
even in the absence of a fully functional leader.

(3) Comparison of inference speeds among three methods: The inference speeds of ALERGIA, DSAI, and MDI
are compared comprehensively to demonstrate the performance differences of these methods across various
tasks. The findings provide a basis for selecting the optimal inference method in practical applications.

2. The Establishment of DFFA and DPFA Models

The DFFA models system behaviors by using precise frequency data to define state transitions, ensuring deter-
ministic results in well-defined situations. In contrast, DPFA integrates deterministic transitions with probabilistic
distributions, enabling the system to deal with uncertainty and randomness. By combining these two automata,
the system can benefit from decision-making stability and the ability to manage events with statistical changes.
Therefore, this study models the deterministic behavior of an agent by defining its rules as a DPFA transformed
from a DFFA. This integration of precise frequency data of DFFA with the probabilistic distribution of DPFA
ensures stability and predictability in decision-making and provides accurate quantification for handling events with
statistical and stochastic properties. The notations used in the previous and following sections are listed in Table 1.

Table 1. Notations.

Notations Description

Af Symbol representation of DFFA

Σf Alphabet of DFFA, representing all input symbols the automaton
can process

Qf Set of states of DFFA, including all possible states the automaton
may occupy

Ifr Initial state frequency function, describing the frequency at
which the system starts in a specific state

Ffr Final state frequency function, describing the frequency at which
the automaton terminates in each state

δfr Transition frequency function, defining the frequency of
transitioning from one state to another through a specific input

symbol

δA Associated transition function, determining the unique path of
state transitions given a specific input

w Observed event sequence in sample S

θ Transition path in an automaton for a given sequence of events

3 of 18

Appl. Math. Stat. 2024, 1, x.

Table 1. Cont.

Notations Description

Bp Symbol representation of DPFA

Σp Alphabet of DPFA, representing all input symbols the automaton
can process

Qp Set of states of DPFA, containing all possible states the system
may occupy

IP Initial state probability function, representing the probability
distribution for the system to start in each state

FP Final state probability function, describing the probability
distribution for the system to terminate in each state

δP Transition probability function, defining the probability of
transitioning from one state to another through a specific input

symbol

n Value of the transition frequency function

P Transition probability between states in a probabilistic automaton

γ Probability or frequency difference between two states

PrA,q(x) Transition probability of state q under input sequence x

Ffr(q) Initial frequency of state q

FREQ[q] Array storing the frequency information for state q

FP(q) Probability distribution of state q

δP Transition probability distribution

S Sample set

cntS(w) The number of times string w appears in sample S

∥Bp∥ Size or complexity of automaton Bp

score(S,Bp) Match score between sample set S and automaton Bp

Pf Inferred frequency

Pp Inferred probability

2.1. DFFA Models

Since the agent cannot obtain the DPFA directly from the command, the DFFA needs to be defined first to
make initial reasoning about the rules in the command. A DFFA Af is a tuple, and Af = ⟨Σf , Qf , Ifr, Ffr, δfr⟩,
where

• Σf represents the alphabet, including all possible input symbols that the automaton can process.

• Qf denotes a finite set of states, containing all the possible states the automaton can occupy during its operation.

• Ifr : Qf → N is the initial-state frequency function; In a deterministic automaton, there is exactly one state ql
for which Ifr(q) ̸= 0, indicating the state from which the system starts.

• Ffr : Qf → N is the final-state frequency function, describing the frequency at which the automaton terminates
in each state.

• δfr : Qf × Σf ×Qf → N is the transition frequency function, defining the frequency at which the automaton
transitions from one state to another through a specific input symbol.

• δA : Qf ×Σf → Qf is the associated transition function, which determines the unique path of state transitions
in the automaton given a specific input.

4 of 18

Appl. Math. Stat. 2024, 1, x.

The above DFFA satisfies frequency conservation if and only if, for any qu ∈ Qf , the initial frequency Ifr(q)

equals the sum of the frequencies of all possible transitions and termination states from state qu. That is, for each
state qu, the following relation is satisfied:

Ifr(qu) +
∑

q′u∈Qf

∑
a∈Σf

δfr(q
′
u, a, qu) = Ffr(qu) +

∑
q′u∈Qf

∑
a∈Σf

δfr(qu, a, q
′
u). (1)

Based on Equation (1), the components of the DFFA model are as follows:

• a ∈ Σ represents the specific action performed during the activity; The transition from that state represents the
frequency of transitioning to another state after the activity is performed.

• qλ ∈ Qf denotes the initial state, as the initial condition of the activity, at which time no activity is performed.

• qu ∈ Qf indicates the state of the agent at the current time.

• A transition (q′u, a, qu) ∈ δAf
from state q′u and event a and activity Af to reach state qu.

• FAf
(q′u, a, qu) represents the frequency of observing event a and destination state qu starting from state q′u in

activity Af .

• w = a1a2 . . . ai denotes a sequence of observed events, with its length (denoted as |w|) corresponding to the
number of events in the sequence.

• θ = (qλ, a1, qj , a2, qk, . . . , ql, ai, qu) is a transition path for w in Af , i.e., the sequence of transitions (qλ, a1, qj),
(qj , a2, qk), . . . , (ql, ai, qu) ∈ δAf

consistent with w = a1a2 . . . ai.

2.2. DPFA Models

The DPFA ensures system stability and predictability by combining deterministic state transitions with
probabilistic distribution properties, and at the same time, it provides precise quantification for dealing with random
events. A DPFA Bp is a tuple Bp = ⟨Σp, Qp, IP , FP , δp⟩, where

• Qp is a finite set of states, including all possible states (labeled as q1, . . . , q|Q|) the system may occupy.

• Σp is the alphabet, encompassing all possible input symbols that the automaton can process.

• IP : Qp → Qp
+ ∩ [0, 1] is the initial-state probability function, representing the probability distribution for the

system to start in each state.

• FP : Qp → Qp
+ ∩ [0, 1] is the final-state probability function, describing the probability distribution for the

system to terminate in each state.

• δP : Qp × (Σ ∪ {λ}) × Qp → Qp
+ is a transition function, defining the probability of transitioning from

one state to another given a specific input symbol; the function is complete: δP (qv, a, q′v) = 0 indicates no
transition from qv to q′v labeled with a. This paper also denotes (qv, a, q′, Pv) instead of δP (qv, a, q′v) = P

where P stands for probability.

IP , δP , and FP are functions such that: ∑
qv∈Qp

IP(qv) = 1, (2)

and
∀qv ∈ Qp,FP(qv) +

∑
a∈Σp∪{λ},q′v∈Qp

δP(qv, a, q
′
v) = 1. (3)

Since the DPFA is derived from the DFFA, its specific components correspond directly to those of the DFFA
and will not be detailed here. As depicted in Figure 2a, for the DPFA, all initial states, where qλ and qb serve as
the transition states, satisfy the transition probability given by Equation (3). For qλ, its probability is satisfied:
Pqλ +Pa +Pb =

1
2 +

1
4 +

1
4 = 1; For qb, its probability is satisfied: Pqb +Pa +Pb =

1
2 +

1
6 +

1
3 = 1. Similarly, as

shown in Figure 2b, for the DFFA, all initial states, where qλ and qb serve as the transition states, satisfy the transition
probability given by Equation (1). For qλ, its frequency is satisfied: Fλ + Fb = 65 + 10 = Fqλ + Fa = 50 + 25;
For qb, its frequency is satisfied: Fqλ + Fb = 15 + 10 = Fa = 25.

5 of 18

Appl. Math. Stat. 2024, 1, x.

Figure 2. (a) State transitions of a DFFA; (b) State transitions of a DPFA.

2.3. Construction of DPFA from DFFA

The DFFA is constructed by manually giving the frequencies and calculating them. The DPFA is constructed
by transforming it from DFFA, and this transformation involves calculating the frequencies of state transitions in
the DFFA and normalizing them to obtain the corresponding probabilities, which are used to define the DPFA.

The detailed steps for the transformation process are as follows:

(1) Initialize DFFA: Start with the DFFA Af = (Σf , Qf , Ifr, Ffr, δfr, δA).
(2) Initialize frequency counts: For each state q in Q, initialize the frequency of state q in the array FREQ[q] to

store the frequency information for each state as follows:

FREQ[q] = Ffr(q). (4)

(3) Update the frequencies and calculate the final probabilities: Iterate over all possible input symbols a. Accumu-
late the total frequency FREQ[q] for state q. Then, calculate the probability distribution FP(q) by dividing the
initial frequency Ffr(q) of state q by the accumulated total frequency FREQ[q]. This process is given by:

FREQ[q] = FREQ[q] + δfr(q, a, δA(q, a)). (5)

FP(q) =
Ffr(q)

FREQ[q]
. (6)

(4) Calculate the transition probabilities: The frequency δfr(q, a, q
′) of transitioning from state q to state q′

through input a is divided by the total frequency of state q FREQ[q] to obtain the corresponding transition
probability:

δP(qf , a, q
′
f) =

δfr(qf , a, q
′
f)

FREQ[q]
. (7)

When state qf receives input a, the automaton transitions according to the original transition function δAf
.

The state transition function δAf
is assigned to the new one δBp as follows:

δP (qv, a) = δA(qf , a). (8)

(5) Construct the DPFA: After computing all the necessary probabilities and updating the transition function
Bp = (Σv, Qv, qλ, FP , δP , δBp

), output the deterministic probabilistic finite automaton according to Equations
(4)–(8).

3. Three Methods for Agents to Reason about Their Own Rules

3.1. Folding and Merging

All three methods for reasoning about agents’ own rules involve two steps: Enumerate all states to form an
initial automaton and merge compatible states in this initial automaton. The merging process is conducted by
recursively combining two states qf and q′ and their substructures to simplify and optimize the overall automaton

6 of 18

Appl. Math. Stat. 2024, 1, x.

structure. After receiving input a, state qf is replaced by the target state q′, and the related state transition function
δA and frequency information δfr are updated. The main modification involves changing the transition target from
q′ to q for all states qf and adjusting the frequency value n = δfr(qf , a, q

′). At last, the substructures of q and q′

are merged by iterating over all possible input symbols α ∈ Σ. If there is already a transition for state q′ for a given
input α, then the corresponding subtrees are merged, the frequency of both is increased, and the transformation
relation is updated. The relationship between folding and merging and their respective processes are demonstrated
in Figure 3. The details of the merging process are as follows:

Figure 3. The folding and merging process.

First, given a finite state automaton A and two states q and q′, where q ∈ RED and q′ ∈ BLUE, consider a
state qf and an input a such that:

δA(qf , a) = q′. (9)

In this case, let n be the value of the frequency transition function δfr:

n = δfr(qf , a, q
′). (10)

Then, the state transition function δA is updated by changing the target state from q′ to q when qf receives the
input a:

δA(qf , a) = q. (11)

7 of 18

Appl. Math. Stat. 2024, 1, x.

Meanwhile, the frequency transition function δfr is updated by assigning the value n to the pair (qf , a, q):

δfr(qf , a, q) = n. (12)

and assigning δfr(qf , a, q
′) to 0:

δfr(qf , a, q
′) = 0. (13)

Folding is utilized to optimize the state transition system of an automaton by recursively merging the subtree
structures of two states, q and q′. The detailed process is as follows:

First, the frequency distributions of states q and q′ are merged according to the following equation:

Ffr(q) = Ffr(q) + Ffr(q
′). (14)

Then, iterate over all possible input symbols α ∈ Σ. For each input symbol α that the automaton can receive,
determine whether there is a defined state transition δA(q

′, α) for state q′ upon receiving α. If δA(q′, α) exists,
further determine whether there is a defined state transition δA(q, α) for state q upon receiving the same input α.
If there is a transition for state q, the algorithm merges the frequency information of the two states’ transitions
according to the following equation:

δfr(q, α, δA(q, α)) = δfr(q, α, δA(q, α)) + δfr(q
′, α, δA(q

′, α)). (15)

This step guarantees that the merged state can accurately reflect the transition frequencies of both original
states q and q′ while preserving the transition logic under input α.

Subsequently, the algorithm continues to recursively merge the subtree structures pointed to by δA(q, α) and
δA(q

′, α), thereby ensuring the integrity and correctness of the entire structure.
If δA(q, α) is not yet defined, the algorithm directly assigns the state transition δA(q

′, α) from state q′ to the
corresponding transition for state q upon receiving input α, and then it updates the associated transition frequency
as follows:

δA(q, α) = δA(q
′, α). (16)

δfr(q, α, δA(q, α)) = δfr(q
′, α, δA(q

′, α)). (17)

Finally, through Equations (14) and (17), the merging of states q and q′ is completed for all input symbols α,
and the state transition functions and frequency information of the automaton are updated accordingly.

3.2. ALERGIA

ALERGIA is a probabilistic inference method for inferring DFFA from limited data samples by exploiting
state frequency similarities. This method has been widely used in fields such as natural language processing, speech
recognition, and bioinformatics, and it is employed to infer automata models that can identify underlying rules
from limited data, thus improving the precision of data modeling. The core idea of ALERGIA is to evaluate
the frequency differences between two states for all input symbols and determine their compatibility based on a
predefined threshold. If the states are highly similar, they are merged to simplify and optimize the structure of the
automaton. This process is carried out incrementally over the sample set to ensure that the automaton can accurately
capture the statistical properties of the data. The specific steps are as follows:

(1) Frequency proximity test: Given a finite-state automaton A, along with the frequencies f1, f2, and their
corresponding sample sizes n1, n2, the process is designed to check whether the two frequencies are sufficiently
similar. First, the difference between the frequencies, denoted as γ, is computed as follows:

γ =

∣∣∣∣ f1n1
− f2

n2

∣∣∣∣ . (18)

8 of 18

Appl. Math. Stat. 2024, 1, x.

γ is compared with a threshold value to check whether the frequencies are sufficiently similar.

γ < (

√
1

n1
+

√
1

n2
) ·

√
1

2
ln

2

α
. (19)

If γ is less than this threshold, then f1
n1

and f2
n2

are considered sufficiently similar, and a boolean value is
returned to indicate this result.

(2) State compatibility test: The process begins with a finite-state automaton A and two states, qu and qv, that
need to be compared. First, these states are assumed to be compatible, and the variable Correct is initialized
to true.

Then, a frequency proximity test is conducted to compare the overall frequency distributions of qu and qv . If
this test confirms significant differences between the frequency distributions of the two states, Correct is set
to false to indicate that the states are incompatible.

Meanwhile, the process checks the state transition frequencies for each input symbol a ∈ Σ. If the transition
frequencies between qu and qv are incompatible for any input symbol a, then Correct is again set to false.

Finally, the value of Correct is returned to indicate whether qu and qv are compatible based on the comparison
result.

(3) Finite-state automaton construction: In the iterative process, a state qb with a frequency greater than or equal to
t0 is chosen from the set blue. For each iteration, it is determined whether there exists a state qr in the set red
such that qr and qb demonstrate compatibility in the frequency proximity test. If qr and qb are compatible, they
are merged; otherwise, qb is added to the set red. After each iteration, the set blue is updated by eliminating
the processed state and adding prefix states that are different from those in the set red. This process continues
until no further merging operations can be performed. Finally, by iteratively adjusting the states in the sets red
and blue, a new finite-state automaton A is constructed and returned, which can perform effectively on the
given sample set.

3.3. DSAI

The DSAI iteratively compares and merges the transition probabilities of two states to construct a finite-state
structure optimized for a given sample set. The core idea of this method is to compare the probability differences
between states to determine whether they are sufficiently similar to be merged into a single state. If their behaviors
are highly similar, these states are merged to simplify the structure; otherwise, they are retained in different sets for
further examination and optimization. This process is repeated iteratively, and finally, a system that is statistically
significant and structurally optimized is obtained. The specific steps are as follows:

First, for any input sequence x ∈ Σ⋆, the transition probabilities PrA,q(x) and PrA,q′(x) for states q and
q′ under input x are calculated. The difference between these probabilities should be evaluated to determine its
significance, and it is computed as follows:

γ = |PrA,q(x)− PrA,q′(x)| . (20)

Next, this difference γ is compared with a predefined threshold µ
2 :

γ >
µ

2
. (21)

If the above inequality holds, it suggests that there is a significant behavioral difference between states q and q′

under input sequence x and that the transition characteristics of states q and q′ are incompatible. In this case, the
algorithm should immediately return a result of incompatibility.

The next step is to further verify the compatibility of states q and q′ for specific input sequences. Particularly,
for each input sequence x belonging to the set mps(Aqr, k + 1), the transition probability PrA, q′(x) for state q′

under input x is calculated. Again, this transition probability is compared with µ
2 :

PrA,q′(x) >
µ

2
. (22)

If this inequality holds, it indicates that the transition probability of state q′ under the specific input sequence

9 of 18

Appl. Math. Stat. 2024, 1, x.

x far exceeds the threshold. Therefore, states q and q′ are considered incompatible, and the algorithm should
immediately return a result of incompatibility.

If none of the inequalities hold for all input sequences and specific input sequences, it indicates that all
differences do not exceed the allowable threshold, then states q and q′ can be considered compatible. In this case,
the algorithm should return a result of compatibility.

This method for compatibility determination realizes precise quantification of behavioral differences between
states through rigorous mathematical analysis, providing a reliable basis for further merging states and optimizing
automaton structures. It not only considers the overall transition probability differences but also pays particular
attention to behaviors under critical input sequences, thereby ensuring the accuracy and comprehensiveness of the
determination.

3.4. MDI

The MDI iteratively merges states in a probabilistic automaton by comparing their transition probabilities to
construct an optimized finite-state structure for the given data sample. Its core idea is to calculate a match score
after each potential state merge to measure how well the merged states fit the data, and then it compares this score
with a predefined threshold to determine their compatibility. If the score does not exceed this threshold, the states
are merged to reduce the automaton’s complexity while maintaining its accuracy in modeling the data. This process
continues until no compatible states can be merged. MDI is particularly useful for applications where balancing
model complexity with data fidelity is crucial, such as in language modeling, system diagnostics, and probabilistic
reasoning, because it ensures that the resulting automaton can deal with uncertainty both efficiently and robustly.
The specific steps are as follows:

First, given a finite-state automaton Bp, the threshold α is calculated from the sample set S, and it is employed
to evaluate the statistical significance of frequencies. Then, the prefix tree acceptor is constructed from the sample
set S, and two state sets, red and blue, are initialized, where the former contains the initial state qλ and the latter
contains all prefix states in the sample set.

Next, a state qb with a frequency greater than or equal to α is chosen from the blue set, and it is determined
whether there exists a state qr in the red set such that these two states are compatible in the match score test. If
qr and qb are compatible, they are merged into a new automaton Bp, and the match score (S,Bp) of the merged
automaton with the sample set S is calculated. Subsequently, this score is compared with the threshold α:

score(S,Bp) < α. (23)

score(S,Bp) =

∑
w∈S cntS(w) log PrB(w)

∥Bp∥
. (24)

where:

• S: The sample of strings is being analyzed.
• Bp: The automaton is being evaluated.
• w ∈ S: A string in the sample S.
• cntS(w): The number of times the string w appears in the sample S.
• PrB(w): The probability assigned by the automaton Bp to the string w.
• ∥Bp∥: The size or complexity of the automaton Bp. This can refer to the number of states, transitions, or

parameters in a probabilistic automaton.

The score function is utilized to evaluate how well the automaton Bp models the sample S. Specifically, it sums
over all strings in the sample, weighted by their frequency cntS(w) and the logarithm of the probability log PrA(w)
assigned by the automaton. Then, this sum is normalized by the size of the automaton ∥Bp∥ to strike a balance
between goodness-of-fit and model complexity.

If the match score is less than the threshold, q and q′ are considered compatible; otherwise, qb is added to the
red set to indicate that the states are incompatible.

Finally, the blue set is updated by eliminating the processed state and adding all prefix states that are different
from those in the red set. This process continues repeatedly until no further merging operations can be performed.
Finally, the optimized finite-state automaton Bp that can perform best on the given sample set is returned.

10 of 18

Appl. Math. Stat. 2024, 1, x.

4. Results

In this paper, a reconnaissance aircraft follower in the leader-following structure is taken as an example to
demonstrate how followers infer their own rules. As illustrated in Figure 4, the follower’s rules are defined by an
automaton. First, the leader knows these rules, but the followers do not. The leader sends several commands to the
follower according to the predefined rules, and the follower records the commands it receives.

Figure 4. State transitions of the scout.

As listed in Table 2, the follower calculates the frequency of each command sent by the leader, where a stands
for turning on the detection radar, b stands for turning off the radar, c denotes sending position information, qλ
represents the flight status, qa stands for the attack support status, and qac denotes the surveillance status. Based on
these command frequencies and using a combination of merging, folding, and the three different inference methods,
the follower can infer a frequency automaton, as shown in Figure 5.

Table 2. The frequency of each order given by the leader.

Action Frequency Action Frequency Action Frequency

λ 3730 aab 60 acba 10
a 1370 aac 220 acbb 20
b 550 aba 130 acbc 40
c 550 abb 50 acca 100
aa 340 abc 60 accb 20
ab 260 aca 400 accc 90
ac 750 acb 80 baac 20
ba 200 acc 250 baba 10
bb 60 baa 10 babb 10
bc 80 bab 40 baca 40
ca 300 bac 150 bbaa 10
cb 70 bba 30 bbab 10
cc 100 bbb 0 bcab 10
aaa 40 bbc 10 bcac 10
aba 130 bca 30 bcba 10
abb 50 bcb 20 bccc 10
abc 60 bcc 20 caaa 10
aca 400 caa 30 caab 10
acb 80 cab 20 cac 190
aca 400 cac 190 caca 50
acb 80 cba 20 cacb 10
aacc 70 cbb 20 cacc 60

11 of 18

Appl. Math. Stat. 2024, 1, x.

Table 2. Cont.

Action Frequency Action Frequency Action Frequency

aaaa 10 cbc 10 cbac 10
aaab 10 cca 60 cbba 10
aaac 20 ccb 10 ccac 20
aaba 30 abca 20
aabc 20 abcb 10

Subsequently, the frequency automaton is utilized to construct a probabilistic automaton representing the
follower’s rules, as demonstrated in Figure 5. To sum up, the follower can infer the rules it follows within the system
by analyzing the commands sent by the leader.

Figure 5. DPFA state transition, where the score in the circle represents the possibility of staying in this state, and
the score on the curve represents the possibility of performing the action to realize the state transition.

This paper takes a reconnaissance drone as an example to demonstrate how a follower in a leader-following
structure infers its operational rules. As demonstrated in Figure 4, the follower’s rules are defined by an automaton.
First, these rules are known to the leader but unknown to the follower. The leader sends several commands to the
follower according to predefined rules, and the follower records these commands.

As listed in Table 2, the follower calculates the frequency of each command sent by the leader. Here, a denotes
activating the detection radar, b denotes deactivating the radar, c represents transmitting location information, qλ
stands for the flight state, qa denotes the attack support state, and qac represents the surveillance state. Based on
these command frequencies, the follower can infer a frequency automaton by using a combination of merging,
folding, and the three distinct inference methods, as illustrated in Figure 5.

5. Simulation

This section provides a simulation example to verify the effectiveness of the aforementioned theoretical results.
Figures 6–9 show the results produced by the initial automaton constructed based on Table 2. The frequencies

corresponding to each action are provided, and the frequency for each state is calculable from the actions associated
with that state. For instance, the frequency of staying in state qλ in Figure 6 is Fqλ = Fλ − Fa − Fb − Fc =

3730−1370−550−550 = 1260, the frequency of staying in state qa in Figure 7 is Fqa = Fa−Faa−Fab−Fac =

1370− 340− 260− 750 = 20, the frequency of staying in state qb in Figure 8 is 550− 200− 60− 80 = 210, and
the frequency of staying in state qc in Figure 9 is Fqb = Fb − Fba − Fbb − Fbc = 550 − 300 − 70 − 100 = 80.
Following the methodology introduced in the previous section, the final probabilistic automaton representing the
follower’s rules is inferred through folding and applying the three inference methods, as demonstrated in Figure 10.

12 of 18

Appl. Math. Stat. 2024, 1, x.

Figure 6. State transitions of qλ.

Figure 7. State transitions of qa.

13 of 18

Appl. Math. Stat. 2024, 1, x.

Figure 8. The state transitions of qb.

Figure 9. The state transitions of qc.

14 of 18

Appl. Math. Stat. 2024, 1, x.

Figure 10. The deterministic probabilistic finite state automaton reasoned by ALERGIA, DSAI, and MDI.

In this study, the inference accuracy is defined as the absolute difference between the inferred frequency of the
corresponding state and the inferred probability:

(1− | Pf − Pp |)× 100%. (25)

Using Equation (25) and the three algorithms designed in the previous section, the results listed in Table 3 are
obtained. Owing to a large amount of experimental data, it can be observed from Table 3 that the final inference
accuracy for each state and action is very high. The calculation of the average value for each state and action
indicates that the final DPFA inference accuracy is 98.535%.

Table 3. The error and accuracy of DFFA and DPFA in different states.

State and Action Probability of DFFA Probability of DPFA Probability Error Accuracy

qλ 2591/5194 1/2 −0.001155 99.88%
qa 84/1980 1/60 0.025758 97.42%
qac 893/1733 13/25 −0.004709 99.53%
qλ|a 1497/5194 2/7 0.002503 99.75%
qλ|b 552/5194 2/14 −0.036581 96.34%
qλ|c 551/5194 1/14 0.034655 96.53%
qa|a 483/1980 1/4 −0.006061 99.39%
qa|b 390/1980 1/5 −0.003030 99.70%
qa|c 1023/1980 8/15 −0.016667 98.33%
qac|a 390/1733 6/25 −0.014957 98.50%
qac|b 130/1733 2/25 −0.004986 99.50%
qac|c 320/1733 4/25 0.024651 97.53%

When merging states, if there is excessively high similarity between two states, it may hinder the learning of
a correct probabilistic automaton, and if the similarity is excessively low, the states cannot be properly merged.
After multiple attempts, the parameter α for ALERGIA is set to 0.05, µ

2 for DSAI is set to 0.1, and α for MDI
is set to 0.15. For commands with frequencies lower than 30, merging them into a state after calculation has the
least impact and will consume a significant amount of computational resources, so they are directly merged with
the previous state without further computation. The inference process of the three different methods is depicted
in Figure 11. Overall, all three methods achieve an accuracy of 98.535% within 6 s, and ALERGIA runs slightly
faster than DSAI and MDI. For the ALERGIA method, its accuracy increases in several short bursts, and this is
because, when calculating the similarity between two states, the states to merge include both the current state and the
subsequent state that can be reached from it. Therefore, when two states are determined to be mergeable, multiple
states will actually be merged, resulting in a sharp improvement in the inferred automaton’s accuracy. For the DSAI
method, the accuracy increases evenly in a wave-like pattern over time. This is because this method determines

15 of 18

Appl. Math. Stat. 2024, 1, x.

whether there is sufficient similarity between actions to be merged, so it sequentially computes whether each action
meets the merging condition, leading to a steady increase in accuracy. For the MDI method, the accuracy first rises
slowly and then faster. This is because, at the beginning of the inference process, the score between the two states
includes information about the automaton’s states, action transition functions, etc. At first, the automaton contains
much information and takes a longer time to compute, so fewer states are merged, and there is a slower increase in
accuracy. Over time, more states are merged, the automaton’s computation time decreases, and its accuracy rises
quickly. Towards the end, the improvement in accuracy slows down, and this is because merging additional states
has little impact on accuracy. The comparison of ALERGIA, DSAI, and MDI methods in terms of accuracy and
speed of increase is presented in Table 4.

Table 4. Comparison of ALERGIA, DSAI, and MDI methods.

Method Accuracy Trend Speed of Increase

ALERGIA Sharp increase, then stabilizes Fastest

DSAI Steady rise with fluctuations Medium

MDI Slow initially, faster later Slow initially, then accelerates

Figure 11. Inference accuracy over time for three methods.

6. Discussion

This study addresses the issue of maintaining the functionality of a MAS in the absence of a leader. Traditional
leader-following models assume that the leader can always function but neglect the risk of system paralysis when
the leader is attacked. Through an analysis of experimental data, it is found that probabilistic automata inference
methods (ALERGIA, DSA, and MDI) effectively enable followers to independently infer operating rules. For
instance, followers can employ the ALERGIA method to infer their own rules and continue executing tasks without
leader commands, demonstrating a high level of self-recovery.

Compared to previous studies, this research utilizes probabilistic automata to improve the autonomy and
robustness of systems in the absence of a leader. This method is different from earlier work that proposed four
state feedback protocols based on adaptive control and H∞ control to manage sensor and actuator failures in
leader-following MASs, without considering total leader-missing attacks [11]. Meanwhile, the findings differ from
those of other studies, which developed a distributed observer and a proportional-integral control strategy to resolve
control problems in leader-following multi-Euler-Lagrange systems under communication link failures and external
disturbances [12]. Unlike these studies, this research illustrates how followers can maintain actions without a leader

16 of 18

Appl. Math. Stat. 2024, 1, x.

by inferring operating rules from historical command data, providing a novel solution for improving the autonomy
and adaptability of MASs.

One limitation of this research is that all inference methods assume that followers can access and process the
leader’s historical command data in a timely manner. In extreme cases where the communication between followers
and the leader is completely broken down, the effectiveness of these methods may be greatly reduced. However,
this research demonstrates that probabilistic automata methods can maintain system continuity and effectiveness
even in the absence of a leader. These findings provide new perspectives for future theoretical research and valuable
guidance for practical system design.

7. Conclusions

This study proposes three probabilistic automata inference methods, namely ALERGIA, DSAI, and MDI,
and compares their efficiency in rule-based reasoning. The construction of a probabilistic finite state automaton
improves the system’s ability to manage uncertainty and its stability in dynamic environments. The three methods
enable followers to autonomously infer and execute operational rules, thereby maintaining system continuity even
under leader-missing attacks. Comparative analysis indicates that ALERGIA runs slightly faster than DSAI and
MDI, providing a robust basis for selecting the optimal method in practical applications. The results suggest that
even in the absence of a leader, followers can independently infer their operational rules, ensuring the continuity
and effectiveness of MASs. Future research will investigate integrating adaptive learning mechanisms, such as
reinforcement learning or neural networks, into the leader-follower model to improve decision-making and further
enhance the resilience and autonomy of MASs.

Author Contributions: K.W.: data curation, writing—original draft preparation; X.G.: conceptualization, methodology, software.
All authors have read and agreed to the published version of the manuscript.
Funding: This work was supported by the National Natural Science Foundation of China under Grants 62003374 and 62403128,
the Fundamental Research Funds for the Central Universities under Grant 08002150138, the Hunan Provincial Natural Science
Foundation of China under Grant 2020JJ5765, the Open Foundation of Key Laboratory of Cyberspace Security, Ministry of
Education (No. KLCS20240403), the Jiangsu Provincial Natural Science Foundation of China under Grants No. BK20210223
and BK20241284, the Nanjing Science and Technology Innovation Project for Overseas Scholars under Grant 4209012304, and
Start-up Research Fund of Southeast University under Grant RF1028623260.
Institutional Review Board Statement: Not applicable
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grants 62003374
and 62403128, the Fundamental Research Funds for the Central Universities under Grant 08002150138, the Hunan Provincial
Natural Science Foundation of China under Grant 2020JJ5765, the Open Foundation of Key Laboratory of Cyberspace Security,
Ministry of Education (No. KLCS20240403), the Jiangsu Provincial Natural Science Foundation of China under Grants No.
BK20210223 and BK20241284, the Nanjing Science and Technology Innovation Project for Overseas Scholars under Grant
4209012304, and Start-up Research Fund of Southeast University under Grant RF1028623260.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, K.-D.; Kumar, P.R. Cyber–physical systems: A perspective at the centennial. Proc. IEEE 2012, 100, 1287–1308.
2. González-Briones, A.; De La Prieta, F.; Mohamad, M.S.; Omatu, S.; Corchado, J.M. Multi-agent systems applications in

energy optimization problems: A state-of-the-art review. Energies 2018, 11, 1928.
3. Sharma, M.K.; Zappone, A.; Assaad, M.; Debbah, M.; Vassilaras, S. Distributed power control for large energy harvesting

networks: A multi-agent deep reinforcement learning approach. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1140–1154.
4. Iqbal, S.; Altaf, W.; Aslam, M.; Mahmood, W.; Khan, M.U.G. Application of intelligent agents in health-care. Artif. Intell.

Rev. 2016, 46, 83–112.
5. Radhakrishnan, B.M.; Srinivasan, D. A multi-agent based distributed energy management scheme for smart grid applica-

tions. Energy 2016, 103, 192–204.
6. Karydis, K.; Kannappan, P.; Tanner, H.G.; Jardine, A.; Heinz, J. Resilience through learning in multi-agent cyber-physical

systems. Front. Robot. AI 2016, 3, 36.
7. Khaitan, S.K.; McCalley, J.D. Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 2014,

9, 350–365.

17 of 18

Appl. Math. Stat. 2024, 1, x.

8. Mahela, O.P.; Khosravy, M.; Gupta, N.; Khan, B.; Alhelou, H.H.; Mahla, R.; Patel, N.; Siano, P. Comprehensive overview
of multi-agent systems for controlling smart grids. CSEE J. Power Energy Syst. 2020, 8, 115–131.

9. Jiao, W.; Sun, Y. Self-adaptation of multi-agent systems in dynamic environments based on experience exchanges. J. Syst.
Softw. 2016, 122, 165–179.

10. Binyamin, S.S.; Ben Slama, S. Multi-agent Systems for Resource Allocation and Scheduling in a smart grid. Sensors 2022,
22, 8099.

11. Chen, C.; Lewis, F.L.; Xie, S.; Modares, H.; Liu, Z.; Zuo, S.; Davoudi, A. Resilient adaptive and H∞ controls of
multi-agent systems under sensor and actuator faults. Automatica 2019, 102, 19–26.

12. Long, M.; Su, H.; Zeng, Z. Distributed observer-based leader–follower consensus of multiple Euler–Lagrange systems.
IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 157–168.

13. Gong, X.; Li, X.; Shu, Z.; Feng, Z. Resilient output formation-tracking of heterogeneous multiagent systems against
general Byzantine attacks: A twin-layer approach. IEEE Trans. Cybern. 2023, 54, 2566–2578.

14. Baxevani, K.; Zehfroosh, A.; Tanner, H.G. Resilient Supervisory Multiagent Systems. IEEE Trans. Robot. 2021, 38,
229–243.

15. Mahfouz, M.; Hafez, A.T.; Ashry, M.M.; Elnashar, G. Cyclic leader-following Strategy For Cooperative Unmanned Aerial
Vehicles. In Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, Cairo, Egypt, 4-6
September 2019; IEEE: New York, NY, USA, 2019; pp. 1–6.

16. Wei, Z.; Zhang, X.; Zhang, Y.; Sun, M. Weighted automata extraction and explanation of recurrent neural networks for
natural language tasks. J. Log. Algebr. Methods Program. 2024, 136, 100907.

17. Bates, M. Models of natural language understanding. Proc. Natl. Acad. Sci. USA 1995, 92, 9977–9982.
18. Collins, M.; Head-driven statistical models for natural language parsing. Comput. Linguist. 2003, 29, 589–637.
19. Maletti, A. Survey: Finite-state technology in natural language processing. Theor. Comput. Sci. 2017, 679, 2–17.
20. Jaf, S.; Calder, C. Deep learning for natural language parsing. IEEE Access 2019, 7, 131363–131373.
21. Carrasco, R.C.; Oncina, J. Learning stochastic regular grammars by means of a state merging method. In Proceedings of the

International Colloquium on Grammatical Inference, Alicante, Spain, 21–23 September 1994; Springer: Berlin/Heidelberg,
Germany, 1994; pp. 139–152.

18 of 18

	Introduction
	The Establishment of DFFA and DPFA Models
	DFFA Models
	DPFA Models
	Construction of DPFA from DFFA

	Three Methods for Agents to Reason about Their Own Rules
	Folding and Merging
	 ALERGIA
	DSAI
	MDI

	Results
	Simulation
	Discussion
	Conclusions

