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Abstract: A vertex set S of a graph G is called an independent dominating set if S is an independent set and each
vertex in V (G) \ S is adjacent to a vertex in S. The independent domination number i(G) of G is the minimum
cardinality of an independent dominating set in G. This paper first proves that if G is a connected K1,3-free cubic
graph, then i(G) ≤ 1

3 |V (G)|. Meanwhile, i(G) = 1
3 |V (G)| if and only if G ∈ H, where H is an infinite cubic

family with each graph being a C+
6 -necklace. Then, it is shown that if G is a {K1,3,K

−
4 , C+

6 }-free cubic graph
with no C3□K2-component, then i(G) ≤ 5

18 |V (G)|. This result is tight.
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1. Introduction

Let G = (V,E) be a graph. A set S of vertices in a graph G is called an independent dominating set ,
abbreviated as ID-set, if S is an independent set and every vertex in V (G) \ S is adjacent to a vertex in S. The
independent domination number of G, denoted as i(G), is the minimum cardinality of an ID-set, and an ID-set of
cardinality i(G) in G is called an i(G)-set. For recent books on independent domination, please refer to [1, 2].

The notations and graph theory terminologies in this paper generally follow [3]. The degree of a vertex in
graph G is denoted as dG(v), abbreviated as d(v). For an integer k ≥ 1, a k+-vertex is a vertex having a degree of
at least k. The maximum degree among the vertices of G is denoted as ∆(G). The open neighborhood NG(v) of
a vertex v in G is the set of neighbors of v, while the closed neighborhood of v is the set NG[v] = {v} ∪ N(v).
For a set S ⊆ V , the subgraph induced by S is denoted as G[S], and G-S is abbreviate as G[V (G) \ S]. Let [k] be
the set {1, 2, . . . , k} for a positive integer k. A cycle on n vertices is denoted as Cn. For vertex v ∈ V (G), let u
be a neighbor of v and u be on a triangle T . Then, v is adjacent to triangle T , and u is incident with T .

A graph is F-free if it does not include F as an induced subgraph. A claw is a star K1,3. A diamond is a
K4 − e, where e is referred to as the missing edge. In this paper, K4 − e is abbreviated as K−

4 . C+
6 is defined for

the simple graph obtained from two vertex disjoint triangles by adding two vertex disjoint edges to it. In Figure 1,
from left to the right, the first three subgraphs are K1,3, K−

4 , and C+
6 , respectively. A k-regular graph is a graph

where every vertex has a degree of k. If k = 3, then the graph is a cubic graph. Independent domination in cubic
graphs and claw-free graphs has been extensively investigated in the literature (e.g., [3–8], etc.).

For a connected k-regular graph G where k ≥ 1. Rosenfeld [9] pointed out that i(G) ≤ V (G)
2 , and this is

tight only for the balanced complete bipartite graph Kk,k. For a cubic graph, Lam, Shiu, and Sun [10] established
the following upper bound on the independent domination number.

(a) (b) (c) (d)

Figure 1. Three subgraphs and C5□K2.
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Theorem 1.1. [10] If G is a connected cubic graph of order n, where n ≥ 8, then i(G) ≤ 2n/5, and the bound is
tight by C5□K2. See Figure 1d.

Goddard and Henning [3] speculated that there is only one graph where the upper bound in Theorem 1.1 is
tight. Dorbec et al. [11] claimed that the conjecture holds if, in addition, G does not have a subgraph isomorphic
to K2,3.

Theorem 1.2. [11] If G ̸= C5□K2 is a connected cubic graph of order n that does not have a subgraph isomor-
phic to K2,3, then i(G) ≤ 3n/8.

The number of vertices in the largest independent set of a graph G is referred to as the independent number
and is denoted as β(G). Murugesan et al. [12] pointed out that an independent set of a graph G is dominating if
and only if it is maximal. Thus, β(G) is a natural upper bound of G on the independent dominating number. Wang
[13] obtianed the exact values for {K1,3,K

−
4 }-free cubic graphs on the independent number.

Theorem 1.3. [13] For every connected claw-free cubic graph G of order n, if G (G ̸= K4) includes no K−
4 as

an induced subgraph, then β(G) = n/3.

Therefore, if G is a {K1,3,K
−
4 }-free cubic graph, then i(G) ≤ |V (G)|

3 . In this paper, it is shown that if G is
a connected K1,3-free cubic graph, then i(G) ≤ 1

3 |V (G)|, and this bound is tight. Furthermore, it is proven that if
G is a {K1,3,K

−
4 , C+

6 }-free cubic graph with no (C3□K2)-component, then i(G) ≤ 5
18 |V (G)|, and this bound is

best possible.

2. Main Results

A graph G is said to be subcubic if its maximum degree is three. Let nj(G) be the number of vertices of
degree j in G. For a graph H , an H-unit in G is called an induced subgraph of G that is isomorphic to H . An edge
e is called a triangle edge if it is on a triangle, and otherwise, e is a flat edge.

Definition 2.1. A graph G is SP-1 if G = K3 or the following three properties hold: (i) G is connected, (ii)
∆(G) = 3, and (iii) every vertex belongs to a triangle.

Theorem 2.1. If G is an SP-1 graph, then 3i(G) ≤ n2(G) + n3(G).

An infinite family H with an independent domination number 1
3 of its order can be established as follows.

Given k disjoint copies F1, F2, . . . , Fk of C+
6 , where V (Fi) = {oi, fi, gi, hi, pi, qi}, and oifigihipiqioi is a 6-

cycle with two chords fiqi and gipi. Let Hk be acquired from the disjoint union of these k C+
6 by adding the edges

{hioi+1 : i ∈ [k − 1]} and hko1. When k = 1, H1 = C3□K2. Let H = {Hk : k ≥ 1 be an integer}.

Theorem 2.2. If G is a connected claw-free cubic graph, then i(G) ≤ 1
3 |V (G)|. Meanwhile, i(G) = 1

3 |V (G)| if
and only if G ∈ H.

For every C+
6 -unit Fi in Hk, i ∈ [k], V (Fi) contains at least two vertices in an ID-set of Hk. Therefore,

i(Hk) ≥ 1
3 |V (Hk)|. Let S =

⋃k
i=1{fi, pi}, then S is an ID-set in Hk. So, i(Hk) = 1

3 |V (Hk)|. For instance,
when k = 4, a minimum ID-set of H4 is illustrated in Figure 2.

Figure 2. An i(H4)-set of H4 indicated with darkened vertices.

Definition 2.2. Let G be a graph, with G1, G2, . . . , Gk being the components of G. A graph G is SP-2 if the
following three properties hold for each i ∈ [k]: (i) ∆(Gi) = 3, (ii) every vertex belongs to a triangle in Gi, and
(iii) Gi has no K−

4 -unit or C+
6 -unit.
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Theorem 2.3. If G is an SP-2 graph without (C3□K2)-component, then 18i(G) ≤ 8n2(G) + 5n3(G).

Corollary 2.4. If G is a {K1,3,K
−
4 , C+

6 }-free cubic graph without (C3□K2)-component, then i(G) ≤ 5
18 |V (G)|.

This bound is tight, and Figure 3 shows the darkened vertices form an i(G)-set of G of cardinality 5
18 |V (G)|.

(a) (b)

Figure 3. Two cubic graphs with independent domination number 5
18

of their orders.

3. Proof of Theorem 2.1 and Theorem 2.2

First, we will want to prove Theorem 2.1, which is stated as follows: If G is an SP-1 graph, then 3i(G) ≤
n2(G) + n3(G).

Proof. By means of contradiction, let G be a counterexample of an SP-1 graph with a minimum order. Then, G
is connected, and 3i(G) > n2(G) + n3(G). Let G = (V (G), E(G)) and |V (G)| = n. We proceed further with
several claims.

Claim 1. n ≥ 7.

Proof. If n = 3, G = K3 is not a counterexample. If n = 4, G is either K4 or K−
4 . In either of cases, we have

3i(G) = 3 ≤ n2(G) + n3(G).
If n = 5, let v be the vertex of degree three, v1, v2, let v3 be the three neighbors of v in G, and let w be the

vertex not adjacent to v. Since G is an SP-1 graph, w belongs to a triangle, i.e., at least two vertices in {v1, v2, v3}
with w will form triangles. Without loss of generality, it could be assumed that v1, v2, and w form a triangle.
Then, G[{v, v1, v2, w}] is diamond unit since ∆(G) = 3, v1v3, v2v3 /∈ E(G). That is, the triangle incident v3
does not contain v1 or v2. Then, the unique possibility is that vwv3 forms a triangle. However, it contradicts that
vw /∈ E(G), i.e., v3 does not belong to any triangle, showing a contradiction. Hence, there is no SP-1 graph when
n = 5.

If n = 6, then G is one of the three graphs shown in Figure 4. In each of the cases, 3i(G) = 6 ≤ n2(G) +

n3(G). Therefore, n ≥ 7.

(a) (b) (c)

Figure 4. The three special subcubic graphs of order 6.

Claim 2. Let X ⊆ V (G), G′ = G−X . If every component of G′ is an SP-1 graph with an order of less n,
then 3i(G′) ≤ n2(G

′) + n3(G
′).

Proof. Let G1, G2, . . . , Gk be the components of G′, and let Di be an i(Gi)-set, i ∈ [k]. By linearity, we have

3i(G′) = 3

k∑
i=1

i(Gi) ≤
k∑

i=1

(n2(Gi) + n3(Gi)) = n2(G
′) + n3(G

′).
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Claim 3. G contains no diamond unit.

Proof. Suppose that G has a diamond unit S, where V (S) = {a, b, c, d} and ab are the missing edges. Since G is
connected and n ≥ 7, at least one of a, b has a degree of three.

If a or b has a degree of two, without loss of generality, say d(b) = 2. Then, d(a) = 3, and a is adjacent to
a triangle. Let G′ = G − V (S), and let D′ be an i(G′)-set. Note that G′ is still an SP-1 graph, and D′ ∪ {c} is
an ID-set of G. Therefore, 3i(G) ≤ 3(i(G′) + 1) ≤ 3 + n2(G

′) + n3(G
′) = 3 + n2(G) + n3(G) − 4 < 3i(G),

showing a contradiction.
So, d(a) = d(b) = 3, and both of a and b are adjacent to triangles. Let G′ = G − V (S), and D′ be an

i(G′)-set. Then, D′ ∪{c} is an ID-set of G. Note that G′ contains at most two components, each of which is SP-1.
By Claim 2, 3i(G) ≤ 3(i(G′) + 1) ≤ 3 + n2(G

′) + n3(G
′) = 3 + n2(G) + n3(G) − 4 < 3i(G), showing a

contradiction.

Claim 4. G contains no C+
6 -unit.

Proof. Suppose that G has a C+
6 -unit F , where V (F ) = {o, f, g, h, p, q}, and ofghpqeo has two chords fq and

gp. At least one of o and h has a degree of three since n ≥ 7.
If o or f has a degree of two, say f , then d(o) = 3, and o is adjacent to a triangle. Let G′ = G− V (F ) and

let D′ be an i(G′)-set. Noting that G′ is SP-1, and D′ ∪ {f, p} is an ID-set of G. Then, 3i(G) ≤ 3(i(G′) + 2) ≤
6 + n2(G

′) + n3(G
′) = 6 + n2(G) + n3(G)− 6 < 3i(G), showing a contradiction. Thus, d(o) = d(h) = 3. Let

G′ = G − V (F ) and D′ be an i(G′)-set. Then, G′ contains at most two components, each of which is SP-1, and
D′∪{f, p} is an ID-set of G. By Claim 2, 3i(G) ≤ 3(i(G′)+2) ≤ 6+n2(G

′)+n3(G
′) = 6+n2(G)+n3(G)−6 <

3i(G), showing a contradiction.

Claim 5. G is cubic.

Proof. Let T be a triangle containing at least one vertex of degree two. Since n ≥ 7, T has at most two vertices of
degree two.

If T has two vertices, say y and z, such that d(y) = d(z) = 2, then the graph G′ = G − V (T ). Let D′ be
an i(G′)-set. Note that G′ is still an SP-1 graph, and D′ ∪ {y} is an ID-set of G. Then, 3i(G) ≤ 3(i(G′) + 1) ≤
3 + n2(G

′) + n3(G
′) = 3 + n2(G) + n3(G)− 3 < 3i(G), showing a contradiction.

Next, consider the case that T has a unique vertex of degree two. Let V (T ) = {x, y, z} and d(z) = 2,
d(x) = d(y) = 3. By Claim 3, x and y do not have an incident triangle other than T . Thus, each vertex in
G′ = G − V (T ) is still contained in a triangle. This indicates that each component of G′ is also SP-1. Let D′

be an i(G′)-set, then D′ ∪ {z1} is an ID-set of G. Therefore, 3i(G) ≤ 3(i(G′) + 1) ≤ 3 + n2(G
′) + n3(G

′) =

3 + n2(G) + n3(G)− 3 < 3i(G), showing a contradiction.

According to Claims 3–5 and the definition of SP-1 graph, G is a {K1,3, diamond,C+
6 }-free cubic. Let

T1 be a triangle in G, where V (T1) = {x1, y1, z1}. Suppose that x2, x3, and x4 are not on T1 and are the
neighbors of x1, y1, and z1, respectively. By Claim 3, x2, x3, and x4 are distinct. Also, by Claim 4, any two
of x2, x3, and x4 do not contain a triangle. Therefore, x1, y1 and z1 are adjacent to three different triangles,
say T2, T3, and T4, respectively. Let V (Ti) = {xi, yi, zi}, i = 2, 3, 4, and {x1x2, y1x3, z1x4} ⊆ E(G). Let
G′ = G−V (T1), and let D′ be an i(G′)-set. Note that every component of G′ is SP-1. If {x2, x3, x4} ⊆ D′, then
D′ is also an ID-set of G. Thus, 3i(G) ≤ 3i(G′) ≤ n2(G

′) + n3(G
′) = n2(G) + n3(G)− 3 < 3i(G), showing a

contradiction. So, without loss of generality, it could be assumed x2 /∈ D′. Then, D′ ∪{x1} is an ID-set of G, and
3i(G) ≤ 3(i(G′) + 1) ≤ 3+n2(G

′) +n3(G
′) = 3+n2(G) +n3(G)− 3 < 3i(G), showing a contradiction.

Now we give the proof of Theorem 2.2.

Proof. Let n = |V (G)|, since G is a claw-free cubic graph, then G is an SP-1 graph, and each vertex of V (G) has
a degree of 3. Thus, by Theorem 2.1, i(G) ≤ 1

3 |V (G)|.
Next, the extreme graphs are described, i.e., i(G) = n

3 . Since G is a cubic graph, n is even. When n = 4,
G = K4, and i(G) = n

4 , there is a contradiction. When n = 6, G is either C3□K2 or K3,3, and since G is
claw-free, we have G = C3□K2; in this case, G ∈ H. Thus, n ≥ 8.

Claim 1. G has no diamond unit.
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Proof. Suppose there is a diamond unit S, where V (S) = {a, b, c, d} and ab is the missing edge in S. Let x be the
neighbor of a not in S, and let y be the neighbor of b not in S. Then, x ̸= y, and otherwise, x does not belong to a
triangle unit.

If x and y are not adjacent, then x and y belong to different triangles. Let G′ be obtained from G− V (S) by
adding the flat edge xy. Thus, G′ is an SP-1 cubic graph. Let D′ be an i(G′)-set of G′, so |D′| = i(G′) ≤ n−4

3 .
At most one of x and y is contained in D′ since xy ∈ E(G). If x ∈ D′ and y /∈ D′, let D = D ∪ {b}. If y ∈ D′

and x /∈ D′, let D = D′ ∪ {a}. If x, y /∈ D′, let D = D′ ∪ {c}. In each of these cases, the set D is an ID-set of
G, and |D| = |D′|+ 1, indicating that i(G) ≤ |D′|+ 1 ≤ n−1

3 < n
3 , a contradiction.

If x and y are adjacent in G, then they belong to a common triangle unit T in G. Let G′ = G − V (S), and
G′ is an SP-1 graph. Let D′ be an i(G′)-set of G′, |D′| = i(G′) ≤ n−4

3 . Note that D′ ∪ {c} is an ID-set of G, so
i(G) ≤ |D| = |D|+ 1 ≤ n−4

3 + 1 = n−1
3 < n

3 , showing a contradiction. Thus, G has no diamond unit.

Claim 2. Every triangle unit in G belongs to a C+
6 -unit.

Proof. Suppose that a triangle unit T1 is not in any C+
6 -unit, where V (T1) = {x1, y1, z1}. Since G is diamond-

free and n ≥ 8, then any two vertices in V (T1) have no common neighbor except the vertex in V (T1). Meanwhile,
since T1 is not contained in any C+

6 -unit, then any two vertices in V (T1) are not adjacent to a common triangle
except for T1. Thus, it is assumed that x1 is adjacent to a triangle T2, y1 is adjacent to T3, and z1 is adjacent to
T4, where V (Ti) = {xi, yi, zi}, i ∈ {2, 3, 4}, and {x1x2, y1x3, z1x4} ⊆ E(G). Let W = {y2, z2, y3, z3, y4, z4}.
This proof will be completed by considering the following three cases.

Case 1. e(G[W ]) ≥ 5. If e(G[W ]) = 6, then G is determined, and i(G) = 3 = n
4 , contradicting that

i(G) = n
3 . Therefore, e(G[W ]) = 5. Let e1 and e2 be two edges in G[W ] and not be y2z2, y3z3, or y4z4. There

are two distributions of e1 and e2, as demonstrated in Figure 5. Let G′ = G − ∪4
i=1V (Ti), and let D′ be an

i(G′)-set, so every components of G′ is SP-1. We have i(G′) ≤ 1
3 (n − 12) = n

3 − 4 by Theorem 2.1. Note that
D′ ∪ {x2, x3, x4} is an ID-set of G. Thus, i(G) ≤ D′ + 3 = n

3 − 1 < n
3 , showing a contradiction.

(a) (b)

x1

y1 z1

x2

y2 z2

x3y3
z3

x4

y4
z4

x1

y1 z1

x2

y2 z2

x3y3

z3

x4

y4

z4

Figure 5. The graphs for Case 1 when e(G[W ]) = 5.

Case 2. e(G[W ]) = 4. By symmetry, it is assumed that z3y4 ∈ E(G). Let x be the neighbor of y2 not in W ,
let y be the neighbor of z2 not in W , let z be the neighbor of y3 not in W , and let r be the neighbor of z4 not in
W . Since d(x) = 3, at least one vertex in {y, z, r} is not adjacent to x, and it is assumed that xr /∈ E(G). Let G′

be obtained from G − ∪4
i=1V (Ti) by adding a flat edge xr. Thus, every component of G′ is SP-1. Let D′ be an

i(G′)-set of G′. Therefore, i(G′) = |D′| ≤ 1
3 (n− 12) = n

3 − 4. Note that D′ ∪ {x2, x3, x4} is an ID-set of G, so
i(G) ≤ n

3 − 1 < n
3 , showing a contradiction.

Case 3. e(G[W ]) = 3. Let y′i be the neighbor of yi, and let z′i be the neighbor of zi, i ∈ {2, 3, 4}. Let
G′ = G − ∪4

i=1V (Ti). If G′ is connected, then G′ is an SP-1 graph, and i(G′) ≤ n−12
3 = n

3 − 4. If G′ is
disconnected, then it is assumed that G′ consists of k components, and G1, G2, . . . , Gk, so each component is
SP-1. Thus, by Theorem 2.1, i(G′) =

∑k
i=1 i(Gi) ≤

∑k
i=1

1
3 (n2(Gi) + n3(Gi)) =

1
3 (n2(G

′) + n3(G
′)). Let D′

be an i(G′)-set of G′. Then, D′ can be extended to an ID-set of G by adding to it the vertices x2, x3, and x4. It
implies that i(G) ≤ |D′|+ 3 ≤ n

3 − 4 + 3 = n
3 − 1 < n

3 , showing a contradiction.

Hence, every triangle unit belongs to a C+
6 -unit, i.e., the vertex V (G) can be partitioned into sets each of

which induces a C+
6 -unit in G. That is, G ∈ H.
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4. Proof of Theorem 2.3

In this section, we give the proof of Theorem 2.3. Now we recall the content of Theorem 2.3: If G is an SP-2
graph without (C3□K2)-component, then 18i(G) ≤ 8n2(G) + 5n3(G).

Proof. Let G = (V (G), E(G)) be a counterexample SP-2 graph to Theorem 2.3 with a minimum order. Appar-
ently, G is connected, and 18i(G) > 8n2(G) + 5n3(G). If n = 4, then G is K4, which is not a counterexample.
Similar to the argument of Theorem 2.1, there is no SP-2 graph when n = 5. If n = 6, G is one of the three graphs,
as shown in Figure 4. In each of the cases, 18i(G) = 36 ≤ 8n2(G) + 5n3(G). Therefore, n ≥ 7.

Then, the following useful fact is proved.
Fact 1. Let X ⊆ V (G), G′ = G −X , and let D′ be an i(G′)-set. If G′ is an SP-2 graph, and there exists a

set D such that D′ ∪D is an ID-set of G, then 18|D| > 8(n2(G)− n2(G
′)) + 5(n3(G)− n3(G

′)).

Proof. By means of contradiction, it is assumed that 18|D| ≤ 8(n2(G) − n2(G
′)) + 5(n3(G) − n3(G

′)). Since
D ∪D′ is an ID-set of G and by the minimality of G, we have

18i(G) ≤ 18(|D|+ |D′|) ≤ 18|D|+ 8n2(G
′) + 5n3(G

′) ≤ 8n2(G) + 5n3(G).

It contradicts that G is a counterexample.

The following claims are provided to describe some structural properties of G.
Claim 1. The following properties hold in G.
(1) The removal of flat edges of G cannot create an induced K1,3, K−

4 , or C+
6 subgraph;

(2) Adding flat edges on G to obtain a result graph with a maximum degree of three cannot create an induced
K1,3 or K−

4 subgraph.

Proof. (1) Let G′ be obtained from G by removing some flat edges. Note that each vertex in V (G′) belongs to a
triangle unit, and ∆(G) ≤ 3, so G′ has no induced K1,3. To the contrary, suppose that G′ has a K−

4 -unit, say S,
where V (S) = {a, b, c, d} and ab is the missing edge in S. Since G has no K+

4 -unit, then ab ∈ E(G), and ab

is the removing flat edge. Thus, G is determined, and G = K4, contradicting that n ≥ 7. Similarly, if G′ has a
C+

6 -unit, then G = C3□P2, showing a contradiction.
(2) Let G′ be obtained from G by adding some flat edges on G, ∆(G′) = 3. Since each vertex in V (G′) is

still in a triangle unit and each edge in a K−
4 -unit is a triangle edge, then G′ is {K1,3,K

−
4 }-free.

Claim 2. Any two triangle units have no common vertex.

Proof. Suppose T1 and T2 are two triangles with common vertices. If they have three common vertices, then
V (T1) = V (T2). If they have two common vertices, then G = K4, or G has a K−

4 -unit, showing a contradiction.
If T1 and T2 have only one common vertex, say x, then d(x) ≥ 4, contradicting that ∆(G) = 3.

Claim 3. No triangle in G has two vertices of degree two.

Proof. Suppose that there is a triangle unit T1 with two vertices of degree two (see Figure 6a). Let V (T1) =

{x1, y1, z1}, d(y1) = d(z1) = 2. Since n ≥ 7, d(x1) = 3, and x1 is adjacent to a triangle T2. Also, at most one
of V (T2) has a degree of two since n ≥ 7. Let X = V (T1), G′ = G − X , so G′ is connected and ∆(G) = 3.
Therefore, by Claim 1, G′ is an SP-2 graph. Let D′ be an i(G′)-set of G′, D = {y1}, and then D′ ∪D is an ID-set
of G. However, 8(n2(G)− n2(G

′)) + 5(n3(G)− n3(G
′)) = 18 = 18|D|, contradicting to Fact 1.

(a) (b) (c)

y1
x1

z1
x2

x1 x2 x3

y1 y2 y3z1 z2 z3

x1 x2

y1 y2z1 z2

Figure 6. The graphs for Claims 3-5.

Claim 4. There are no 3 consecutive triangles with vertex of degree 2 in G.
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Proof. Suppose T1, T2 and T3 are three consecutive triangles with a vertex of degree two (see Figure 6b), where
V (Ti) = {xi, yi, zi} and d(xi) = 2, i ∈ [3]. If y1 and z3 are adjacent, then the graph G is determined. In this
case, 18i(G) = 54 = 8n2(G) + 5n3(G), contradicting the fact that G is a counterexample to our theorem. Thus,
y1z3 /∈ E(G). Let G′ be the graph obtained from G−V (T2) by adding the edge z1y3. By Claim 1 and ∆(G′) = 3,
G′ is SP-2. Let D′ be an i(G′)-set of G′. If z1 and y3 are not contained in D′, then D′ ∪ {x2} is an ID-set of
G; otherwise, say z1 ∈ D′, then D′ ∪ {z2} is an ID-set of G. This suggests that 18i(G) ≤ 18(i(G′) + 1) ≤
18 + 8(n2(G)− 1) + 5(n3(G)− 2) < 18i(G), showing a contradiction.

Claim 5. There are no two consecutive triangles with a vertex of degree two in G.

Proof. Suppose T1 and T2 are two consecutive triangles with a vertex of degree two (see Figure 6c), where
V (Ti) = {xi, yi, zi} and d(xi) = 2, i ∈ [2]. Since n ≥ 7, y1z2 /∈ E(G).

If y1 and z2 are adjacent to the same triangle (see Figure 7a), say T3, where V (T3) = {x3, y3, z3}, {y1y3,
z2z3} ⊆ E(G), then V (T3) has no vertex of degree two by Claim 4, and x3 is adjacent to another triangle T4,
where V (T4) = {x4, y4, z4}, x3x4 ∈ E(G). Furthermore, T4 has at most one vertex of degree two by Claim
3. In this case, let X = ∪4

i=1V (Ti), G′ = G − X , and let D′ be an i(G′)-set of G′. Let D = {y1, z2, x4},
and then D ∪ D′ is an ID-set of G. Thus, if V (T4) has a vertex of degree two, then G′ is a connected SP-2
graph, and ∆(G′) = 3, so 8(n2(G) − n2(G

′)) + 5(n3(G) − n3(G
′)) = 66 > 18|D|, contradicting to Fact 1.

Thus, each of V (T4) has a degree of three. If G′ is not an SP-2 graph, then G′ = K3, and further there is a
C+

6 -unit in G, a contradiction to the assumption that G is an SP-2 graph. Thus, G′ is an SP-2 graph, and then
8(n2(G)− n2(G

′)) + 5(n3(G)− n3(G
′)) = 60 > 18|D|. This contradicts Fact 1.

(a) (b)

x1 x2

y1 z2

x1 x2

y1 z2

x3
x4

x3 x4

z1 y2

y3 z3

z1 y2

y3 z3 y4 z4

Figure 7. The graphs for Claim 5.

If y1 is adjacent to a triangle T3, z2 is adjacent to a triangle T4, T3 ̸= T4 (see Figure 7b), where V (Ti) =

{xi, yi, zi}, i ∈ {2, 3}, and {y1x3, z2x4} ⊆ E(G). In this case, let G′ be obtained from G − V (T1) by adding
the edge x3y2. Therefore, G′ is an SP-2 graph, and G ̸= C3□P2. Let D′ be an i(G′)-set of G′. If x3 and y2 are
not in D′, then D′ ∪ {x1} is an ID-set of G; otherwise, say x3 ∈ D′, then D′ ∪ {z1} is an ID-set of G. Thus,
18i(G) ≤ 18(i(G′) + 1) ≤ 18 + 8(n2(G)− 1) + 5(n3(G)− 2) < 18i(G), showing a contradiction.

Claim 6. G is cubic.

Proof. Assume a triangle T1, where V (T1) = {x1, y1, z1}, contains a vertex x1 of degree of two (see Figure 8a).
Then, y1 and z1 have no common neighbor except for x1 since G has no diamond unit and n ≥ 7. Furthermore,
they are not adjacent to the same triangle since G has no C+

6 -unit. Thus, it is assumed that y1 and z1 are adjacent
to T2 and T3, respectively, where V (Ti) = {xi, yi, zi}, i ∈ {2, 3}, {y1x2, z1x3} ⊆ E(G). Each of V (T2 ∪ T3)

has a degree of three by Claim 5.
If both y2 and z2 are not adjacent to y3 or z3, let G′ be obtained from G − V (T1) by adding the edge

x2x3. Thus, G′ is an SP-2 graph, and G ̸= C3□P2. Let D′ be an i(G′)-set of G′. If x2 and x3 are not in D′,
then D′ ∪ {x1} is an ID-set of G; otherwise, say x2 ∈ D′, then D′ ∪ {z1} is an ID-set of G. Thus, 18i(G) ≤
18(i(G′) + 1) ≤ 18 + 8(n2(G)− 1) + 5(n3(G)− 2) < 18i(G), showing a contradiction.

Without loss of generality, it is assumed that z2y3 ∈ E(G) (see Figure 8b), and then y2z3 /∈ E(G) since G

has no C+
6 -unit. y2 and z3 are adjacent to the same triangle, say T4, where V (T4) = {x4, y4, z4}, {y2y4, z3z4} ⊆

E(G). If d(x4) = 2, then graph G is determined. In this case, 8n2(G) + 5n3(G) = 66 > 54 = 18i(G),
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contradicting the fact that G is a counterexample to our theorem. Thus, d(x4) = 3. Let X = ∪4
i=1V (Ti),

G′ = G−X , and then G′ is an SP-2 graph by Claim 2 and Claim 3. Let D = {y1, y3, y4} and D′ be an i(G′)-set
of G′. Hence, 8(n2(G) − n2(G

′)) + 5(n3(G) − n3(G
′)) = 60 > 54 = 18|D|, showing a contradiction. So,

it is assumed that y2 is adjacent to T4, and z3 is adjacent to T5 (see Figure 8c), where V (T4) = {x4, y4, z4},
V (T5) = {x5, y5, z5}, y2x4, z3x5 ∈ E(G). Let X = ∪4

i=1V (Ti), G′ = G−X , and let D = {y1, y3, x4}, D′ be
an i(G′)-set of G′. Thus, if V (T4) has a vertex of degree two, G′ is an SP-2 graph without C3□K2 component, so
8(n2(G)−n2(G

′))+5(n3(G)−n3(G
′)) = 60 > 54 = 18|D|, showing a contradiction. Thus, each of V (T4) has a

degree of 3. If G′ has no K3 component, then G′ is SP-2. In this case, 8(n2(G)−n2(G
′))+5(n3(G)−n3(G

′)) =

54 = 18|D|, showing a contradiction. If G′ has a K3 component, i.e., y4 and z4 are adjacent to the same triangle
T6, then G contains a C+

6 -unit, showing a contradiction.

(a) (b) (c)

x1

y1 z1

x2 x3

x1

y1 z1
x2 x3

y2 z3
y3

y4 z4
x4

x1

y1 z1

x2 x3

y2 z3y3
x4 x5

z2

y2
z2

y3 z3

z2

y4 z4 y5 z5

Figure 8. The graphs for Claim 6.

Claim 7. G contains no C6 subgraph.

Proof. Suppose that G contains a C6, V (C6) = {v1, v2, . . . , v6}. The following two cases are considered.
Case 1. There exist triangles formed by the inner vertices in V (C6). Suppose that T1 is a triangle, where

V (T1) = {v1, v2, v3}. If the triangle where v4 is located is also formed by three vertices inside V (C6), then v2v4 ∈
E(G) or v4v6 ∈ E(G). If v2v4 ∈ E(G), then G[{v1, v2, v3, v4}] is a K−

4 -unit in G, showing a contradiction. If
v4v6 ∈ E(G), then G[V (C6)] is a C+

6 -unit, showing a contradiction. Thus, the triangle where v4 is located
consists of v4, v5, and a vertex outside V (C6) by Claim 2. Therefore, v6 does not belong to a triangle, showing a
contradiction.

Case 2. There is no triangle formed by the inner vertices inside V (C6). Hence, flat and triangle edges
alternate along C6 (see Figure 9a). Suppose T1, T2, and T3 are three triangles containing vertex in V (C6), where
V (Ti) = {xi, yi, zi} and xi is a vertex outside C6, i ∈ [3]. Given that G is C+

6 -free, then xixi+1 /∈ E(G), where
i + 1 is understand modulo 3, i ∈ [3]. If xi and xi+1 have a common neighbor, say x, then x is not in a triangle,
showing a contradiction.

(a) (b) (c)

x1

x2 x3

x1

x2 x3

x4

x1

y1 z1

z2

y2

y4

z4

z3

y3

x2 x3

x4

x5 x6

y1

y2

y3

z1
z2

z3

y4 z4

y5

z5 y6

z6

Figure 9. The graphs for Claim 7.
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Next, it is claimed that xi and xi+1 are not adjacent to the same triangle. By means of contradiction, suppose
x1 and x3 are adjacent to the same triangle, say T4 (see Figure 9b), where V (T4) = {x4, y4, z4}, and x1y4, x3z4 ∈
E(G). If x2x4 ∈ E(G), then G is determined, and 18i(G) ≤ 54 < 5n3(G) = 60, contradicting that G is a
counterexample graph. If x2x4 /∈ E(G), let G′ = G−∪4

i=1V (Ti), and D′ is an i(G′)-set of G′. By Claim 1, G′ is
an SP-2 graph. Let D = {z2, y3, y4}, and then D ∪D′ is an ID-set of G. Thus, 8(n2(G)− n2(G

′)) + 5(n3(G)−
n3(G

′)) = −16 + 70 = 54 = 18|D|, showing a contradiction.
So, x1, x2, and x3 are adjacent to different triangles, respectively. Assume that xi is adjacent to Ti+3, where

V (Ti+3) = {xi+3, yi+3, zi+3} and xixi+3 ∈ E(G), i ∈ [3] (see Figure 9c). If both y5 and z5 are not adjacent
to y6 and z6, let G′ be obtained from G − ∪4

i=1V (Ti) by adding the flat edge x5x6. Note that G′ is SP-2 and
G′ ̸= C3□P2. Every i(G′)-set of G′ can be extended to be an ID-set of G by adding to it the vertices x4, z5
and y6, Therefore, 18i(G) ≤ 18(i(G′) + 3) ≤ 54 + 8(n2(G) − 2) + 5(n3(G) − 14) = 8n2(G) + 5n3(G) <

18i(G), showing a contradiction. Thus, it is assumed that z5y6 ∈ E(G), and then z6y5 /∈ E(G); otherwise,
G[V (T5) ∪ V (T6)] is a C+

6 -unit. By symmetry, y4y5 ∈ E(G), and z4z6 ∈ E(G). Therefore, G is determined. In
this case, 18i(G) = 90 = 5n3(G), contradicting the fact that G is a counterexample to our theorem.

Claim 8. G contains no C8 subgraph.

Proof. Suppose G contains a C8, the following two cases are considered.
Case 1. There exist triangles formed by the inner vertices in V (C8). Since G has no K4-unit, there are at

most two disjoint triangles formed by V (C8).
Case 1.1. If there are two triangles formed by the inner vertices in V (C8), then there is a C6 in G[V (C8)],

showing a contradiction.
Case 1.2. There is a unique triangle T formed by the inner vertices in V (C8). For the renaming vertices

except for T , we have {v1, v2, . . . , v5} = V (C8) \ V (T ). For any vi ∈ V (C8) \ V (T ), the triangle where vi is
located cannot only contain vi in V (C8); otherwise, d(vi) ≥ 4. By Claim 2, any two triangles have no common
vertex, but it is impossible to have a partition in V (C8) \ V (T ) such that each part has two vertices, showing a
contradiction.

Case 2. There is no triangle formed by the inner vertices inside V (C8). That is, V (C8) is partitioned into 4
binary sets (see Figure 10a). In each binary set, these two vertices are adjacent, and otherwise, there is at least one
4+-vertex, showing a contradiction. Any two vertices in {x1, x2, x3, x4} are not adjacent since G is C6-free.

(a) (b) (c)

x1

x2

x3

x4

y1 z1

y2

z2

y3z3

y4

z4

x1

x2

x3

x4

y1 z1

y2

z2

y3z3

y4

z4

x5

y5

z6

x1

x2

x3

x4

y1 z1
y2

z2

y4

z4
y3 z3

x5

y5 z5

x6

y6

z6

x7

y7 z7

x8

y8

z8

Figure 10. The graphs for Claim 8.

Claim 8.1. Any two vertices in {x1, x2, x3, x4} are not adjacent to the same triangle.

Proof. First, xi and xi+1 are not adjacent to the same triangle because G is C6-free. By the symmetry, it is
assumed that x1 and x3 are adjacent to the same triangle T5 (see Figure 10b), where V (T5) = {x5, y5, z5},
x1y5, x3z5 ∈ E(G). Note that x2x5, x4x5 /∈ E(G), since G has no C6 subgraph.

Case A. x5, x2, x4 are adjacent to the same triangle. Then, G is determined, and i(G) = 5, so 18i(G) =

90 = 5n, showing a contradiction.
Case B. x5 and x2 are adjacent to the same triangle, and x4 is adjacent to another triangle. Assume that x2

and x5 are adjacent to the same triangle T6, where V (T6) = {x6, y6, z6}, {x2y6, x5z6} ⊆ E(G). Meanwhile,
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x4 is adjacent to a triangle T7, T7 ̸= T6, where V (T7) = {x7, y7, z7}, x4x7 ∈ E(G). Let G′ be obtained from
G−V (T1)∪V (T2)∪V (T4)∪V (T5) by adding the flat edges y3y6, x3x7, and let D′ be an i(G′)-set of G′. Since
both T6 and T7 are not adjacent to T3, G′ has no C+

6 -unit. Hence, G′ is an SP-2 graph, and D′ ∪ {z2, y4, y5} is an
ID-set of G. Thus, 18i(G) ≤ 18(i(G′)+3) ≤ 54+8(n2(G)+2)+5(n3(G)−14) = 8n2(G)+5n3(G) < 18i(G),
showing a contradiction.

Case C. x5 is not adjacent to the same triangle with x2 or x4. Assume that x2 is adjacent to a triangle
T6, and x5 is adjacent to a triangle T7, where V (Ti) = {xi, yi, zi}, i ∈ {6, 7}. Let G′ be obtained from G −
V (T1) ∪ V (T2) ∪ V (T4) ∪ V (T5), and let D′ be an i(G)-set of G′. Since both T6 and T7 are not adjacent
to T3, G′ has no C+

6 -unit. Hence, G′ is an SP-2 graph, and D′ ∪ {z2, y4, x5} is an ID-set of G. Therefore,
18i(G) ≤ 18(i(G′) + 3) ≤ 54 + 8(n2(G) + 2) + 5(n3(G) − 14) = 8n2(G) + 5n3(G) < 18i(G), showing a
contradiction.

Thus, it is assumed that xi is adjacent to triangle Ti+4, where V (Ti+4) = {xi+4, yi+4, zi+4}, i ∈ [4],
{x1x5, x2x6, x3x7, x4x8} ⊆ E(G) (see Figure 10c). Let G′ be obtained from G−V (T1)∪V (T2)∪V (T4)∪V (T5)

by adding the flat edges y3x6, z3x8, and D′ is an i(G′)-set of G′. Since both T6 and T8 are not adjacent to T3, G′

has no C+
6 -unit. Thus, G′ is an SP-2 graph.

Hence, 18i(G) ≤ 18(i(G′) + 3) ≤ 54 + 8(n2(G) + 2) + 5(n3(G) − 14) = 8n2(G) + 5n3(G) < 18i(G),
showing a contradiction.

Therefore, G is a {K1,3,K
−
4 , C+

6 }-free cubic graph, and G has no C6 or C8 as subgraph. Fix a triangle
T1 ⊆ V (G), where V (T1) = {x1, y1, z1} (see Figure 11). x1, y1, and z1 have no common neighbors because
G is K−

4 -free. Any two vertices in V (T1) can not be adjacent to the same triangle since G is C+
6 -free and

G ̸= C3□P2. Hence, it is assumed that x1, y1, and z1 are adjacent to T2, T3, and T4, respectively, where
V (Ti) = {xi, yi, zi}, i ∈ {2, 3, 4}, and {x1x2, y1x3, z1x4} ⊆ E(G). For any i, j ∈ {2, 3, 4}, i ̸= j, both yi and
zi are not adjacent to yj or zj because G has no C6 subgraph. yi and zj can not be adjacent to the same triangle
because G is C8-free. Thus, y2, z2, y3, z3, y4, and z4 are adjacent to different triangles, respectively. Suppose
that y2, z2, y3, z3, y4, and z4 are adjacent to T5 T6, T7, T8, T9, and T10, respectively, where V (Ti) = {xi, yi, zi},
i ∈ {5, 6, 7, 8, 9, 10}, {y2x5, z2x6, y3x7, z3x8, y4x9, z4x10} ⊆ E(G). Let G′ be obtained from G − ∪4

i=1V (Ti),
and D′ be an i(G′)-set. By Claim 1 and Claim 7, G′ is SP-2. Noting that D′ ∪ {x2, x3, x4} is an ID-set of G, so
18i(G) ≤ 18(i(G′) + 3) ≤ 54 + 5(n3(G)− 12) = 8n2(G) + 5n3(G)− 6 < 18i(G), showing a contradiction.

x1
y1 z1

x2

y2 z2

x3

y3

z3

x4

y4

z4

x5

y5
z5

x6

y6
z6

x7
y7

z7

x8
y8 z8

x9

y9 z9

x10

y10
z10

Figure 11. Illustrations for G.

This completes the proof.

Corollary 2.4 If G is a {K1,3,K
−
4 , C+

6 }-free cubic graph with no (C3□K2)-component, then i(G) ≤
5
18 |V (G)|.

Proof. If G is a {K1,3,K
−
4 , C+

6 }-free cubic graph with no (C3□K2)-component, then G is an SP-2 graph, and
each vertex in V (G) is of degree three. Thus, by Theorem 2.3, i(G) ≤ 5

18 |V (G)|.
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