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Abstract: The secondary structure of noncoding RNAs (ncRNA) is significantly related to their functions, empha-
sizing the importance and value of identifying ncRNA secondary structure. Computational prediction methods
have been widely used in this field. However, the performance of existing computational methods has plateaued
in recent years despite various advancements. Fortunately, the emergence of machine learning, particularly deep
learning, has brought new hope to this field. In this review, we present a comprehensive overview of machine
learning-based methods for predicting RNA secondary structures, with a particular emphasis on deep learning
approaches. Additionally, we discuss the current challenges and prospects in RNA secondary structure prediction.
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Supplementary

Table 1. ML-based score scheme

Category Title ML Technique Brief Description Pros Cons Resource
Free energy
parameter
refining

Thermodynamic Parameters for an
Expanded Nearest-Neighbor Model
for Formation of RNA Duplexes with
Watson-Crick Base Pairs, Xia et al.,
1998 [50]

Linear regression The model extends the INN-HB model
by giving special treatment to terminal
AU and GC base pairs, combining sta-
tistical analysis with physical models of
the number of hydrogen bonds to im-
prove RNA structure prediction.

The hydrogen bond
model is supported by
the physical model.

Model complexity in-
creases.

https://pubs.acs.

org/doi/10.1021/

bi9809425

Efficient parameter estimation for
RNA secondary structure prediction,
Andronescu et al., 2007 [63]

Constraint generation The model presents constraint genera-
tion, which is the first computational ap-
proach to RNA free energy parameter
estimation.

The parameters are
compatible with var-
ious RNA secondary
structure prediction
software.

Unable to predict
pseudoknots.

http://www.

rnasoft.ca/CG/

Computational approaches for RNA
energy parameter estimation, An-
dronescu et al., 2010 [64]

Loss-augmented max-
margin constraint
generation, Boltzmann-
likelihood model

The model combines both CG and BL
methods to predict the structure through
constraint generation with maximum
margin extension and a novel linear
Gaussian Bayes network.

Expandability Limitations of physi-
cal modeling

http://www.cs.

ubc.ca/labs/

beta/Projects/

RNA-Params

Weighted
method

Rich Parameterization Improves RNA
Structure Prediction, Zakov et al.,
2011 [67]

Discriminative struc-
tured prediction, online
learning

The model uses a rich parametric
machine learning method based on
marginal error-driven parameter estima-
tion to predict RNA secondary structure.

Expandability Limitations of physi-
cal modeling

http://www.

cs.bgu.ac.

il/˜negevcb/

contextfold

A Max-Margin Training of RNA
Secondary Structure Prediction In-
tegrated with the Thermodynamic
Model, Akiyama et al., 2018 [68]

SSVM The model uses thermodynamic parame-
ters and feature scoring parameters from
SSVM training, avoiding overfitting via
L1 regularization to predict RNA sec-
ondary structure.

1.Integrates thermo-
dynamic methods
and machine learning
to enhance prediction
accuracy. 2.Rapid
prediction of long
RNA sequences using
sparse techniques.

High complexity
due to large com-
putational resource
demands.

https://

github.com/

keio-bioinformatics/

mxfold

RNA secondary structure prediction
using deep learning with thermo-
dynamic integration, Sato et al.,
2021 [69]

Deep neural network Combines folding scores from deep neu-
ral networks with Turner nearest neigh-
bor free energy parameters, predicting
structures via thermodynamic regular-
ization to align folding scores and free
energy estimates with true values.

Overfitting is miti-
gated by thermody-
namic regularization.
Using deep neural
network combined
with Zuker-style dy-
namic programming.

1.Cannot predict
pseudoknot struc-
tures. 2.High
parameter complex-
ity.

http://www.dna.

bio.keio.ac.jp/

mxfold2/

Probabilistic
method

Stochastic context-free grammars for
tRNA modeling, Sakakibara et al.,
1994 [70]

EM method Based on SCFGs, uses tree syntax EM
algorithms to generate multiple syntax
rules for effective structure prediction.

High prediction for
tRNA secondary
structure prediction.

Limited prediction ef-
fectiveness; cannot
fully adapt to stan-
dard secondary struc-
tures.

None
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Continued from previous page
Category Title ML Technique Brief Description Pros Cons Resource

RNA secondary structure prediction
using stochastic context-free gram-
mars and evolutionary history, Knud-
sen and Hein, 1999 [? ]

EM method Combines SCFGs with evolutionary his-
tory using phylogenetic trees to capture
mutation patterns in RNA sequences.
Employs maximum a posteriori estima-
tion to enhance RNA secondary struc-
ture prediction using structural and evo-
lutionary information.

Use mutation patterns
to provide additional
structural informa-
tion. Incorporate
evolutionary history
into RNA secondary
structure prediction.

High computational
complexity.

None

Pfold: RNA secondary structure
prediction using stochastic context-
free grammars, Knudsen and Hein,
2003 [72]

EM method Based on explicit evolutionary and prob-
abilistic models, Pfold improves upon
previous algorithms.

1.Suitable for related
RNA sequences with
conserved structures.
2.Improves speed, ro-
bustness, and predic-
tion accuracy of mul-
tiple sequence align-
ment. 3. Capable of
handling large-scale
data.

Relies on comparison
quality. 2.Limited ca-
pability in processing
complex structures.

http://www.daimi.

au.dk/˜compbio/

pfold

A Non-Parametric Bayesian Ap-
proach for Predicting RNA Secondary
Structures, Sato et al., 2010 [75]

Non-parametric
Bayesian methods

Based on non-parametric Bayesian
methods, HDP-SCFGs accurately cap-
ture the complex relationship between
RNA sequences and their secondary
structures through adaptive mechanisms
for structure prediction.

1.Adaptive and
can automatically
infer appropriate
parameters, enhanc-
ing flexibility and
prediction accuracy.
2.HDP-SCFGs out-
perform MFE-based
models.

Relatively slow com-
putational efficiency.

None

A semi-supervised learning approach
for RNA secondary structure predic-
tion, Yonemoto et al., 2015 [76]

Semi-supervised learn-
ing algorithm

Combines SCFG and CRF to propose
a semi-supervised learning method for
training probabilistic models to predict
RNA secondary structures.

Make use of unla-
beled data.

Less accurate than
free energy-based
methods.

None

CONTRA-fold: RNA secondary
structure prediction without physics-
based models, Do et al., 2006 [77]

Conditional log-linear
models (CLLM)

Uses CLLM, which generalizes SCFGs
by employing discriminative training
and feature-rich scoring to learn and es-
timate the probabilistic parameters of
RNA structures. It distinguishes be-
tween correct and incorrect structures by
maximizing conditional log-likelihood,
ultimately selecting the most probable
RNA structure.

1.Higher accu-
racy than tradi-
tional physics and
probability-based
models. 2.CLLM
is flexible. 3.
Data-driven and inde-
pendent of physical
models.

1.CLLM is com-
putationally slow.
2.Fewer structural
constraints may
generate incorrect
structures. 3.Lacks
biological explana-
tion.

http://contra.

stanford.edu/

contrafold/
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Table 2. ML-based preprocessing and postprocessing

Category Title ML Technique Brief Description Pros Cons Resource
Pre-processing

method
A tool preference choice method for RNA
secondary structure prediction by SVM
with statistical tests, Hor et al., 2013 [78]

SVM A SVM-based model which extracts fea-
tures in RNA sequences and uses in-
formation theory methods to select fea-
tures. Then, it selects the most appropri-
ate model from three tools (pknotsRG,
RNA structure, and NUPACK) for RNA
secondary structure prediction.

Feature selec-
tion and fusion
strategies enhance
prediction accuracy.

Semi-automatic se-
lection of the num-
ber of features.

None

Research on folding diversity in statisti-
cal learning methods for RNA secondary
structure prediction, Zhu et al., 2018 [79]

Statistical context-free
grammar model

Based on SCFG, the model identifies
the most likely folding rules of RNA
sequences before the prediction process.

Simplifying the
folding rules of
RNA sequences
improves the
universality and
applicability of
prediction.

Finiteness of syntac-
tic rules of SCFG
model.

None

RNA independent fragment partition
method based on deep learning for RNA
secondary structure prediction, Zhao et al.,
2023 [? ]

CNN, Bi-LSTM,
ResNet, transfer
learning

RNA-Par combines CNN, Bi-LSTM,
ResNet, and other modules to prepro-
cess long RNA sequences into multiple
shorter fragments, enhancing the pro-
cessing capacity of long RNA sequences
through transfer learning.

1.Suitable for
long RNA se-
quences. 2.High
time efficiency.

1.Difficult to handle
long-distance inter-
actions and integrity
between fragments.
2.Performance
is limited when
processing short
RNA sequences.

https://github.

com/mianfei71/

RNAPar

Post-processing
method

Using a neural network to identify
secondary RNA structures quantified
by graphical invariants, Haynes et al.,
2008 [81]

MLP Based on graph theory, trained neural
networks identify the graph invariants
that quantitatively describe the struc-
tures of RNA to determine whether it
is a RNA secondary structure or not.

1.Innovative graph
theory method that
does not rely on
the traditional min-
imum free energy
model. 2.Efficient
structure identifica-
tion.

Inadequate treat-
ment of complex
RNA structures.

None

A predictive model for secondary RNA
structure using graph theory and a neural
network, Koessler et al., 2010 [82]

MLP The model uses vertex merges to cre-
ate larger RNA secondary structures by
combining graph theory operations with
neural networks. It can be used to ver-
ify known RNA classifications and make
structural predictions on unknown RNA
trees.

1.Simulate the RNA
binding process to
improve accuracy.
2.Innovative graph
theory applica-
tions. 3.Applicable
for prediction of
both known RNA
structures and
unclassified RNA
trees.

1.Strong data de-
pendence. 2.Only
seven, eight, nine
vertices of the RNA
tree were verified.

None
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https://github.com/mianfei71/RNAPar
https://github.com/mianfei71/RNAPar


Table 3. ML-based predicting process

Category Title ML Technique Brief Description Pros Cons Resource
End-to-end
approach

An Hopfield Neural Network-Based Algo-
rithm for RNA Secondary Structure Pre-
diction, Liu et al., 2006 [85]

Hopfield networks Uses HNN to find the approximate max-
imum independent set of adjacent plots
composed of RNA base pairs, dynami-
cally adjusts the inhibition and encour-
agement terms between base pairs to pre-
dict the structure.

Higher sensitivity
and specificity
compared with
Nussinov and Zuker
algorithm.

Highly dependent
on biological knowl-
edge.

None

Secondary Structure Prediction of RNA
using Machine Learning Method, Qasim
et al., 2011 [84]

MLP Finds the approximate maximum inde-
pendent set in the circle graph and uses
statistical probability distribution to pre-
dict optimal structure.

Low time complex-
ity.

Limited applicabil-
ity.

None

Neural Networks, Adaptive Optimization,
and RNA Secondary Structure Prediction,
Steeg, 1993 [87]

MFT network The RNA secondary structure prediction
problem is formalized as an optimiza-
tion problem and mapped to Hopfield
network. Using MFT and weight shar-
ing improves learning efficiency and re-
duces computational complexity.

MFT avoids local
minimum problems.

Small experimental
data with 35 tRNA
sequences.

None

RNA secondary structure prediction by
MFT neural networks, Apolloni et al.,
2003 [86]

MFT network with
mean field approxima-
tion

Models receive one-hot encoding se-
quences into MFT networks coupled
with an objective function and biolog-
ical constraints to identify the optimal
structure.

Introduces biologi-
cal constraints into
neural network to
ensure the correct
structure.

Limited to pre-
dicting tRNA
sequences of 75-77
nts.

None

RNA secondary structure prediction using
an ensemble of two-dimensional deep neu-
ral networks and transfer learning, Singh
et al., 2019 [? ]

Compound deep neural
networks, transfer learn-
ing

Utilizes a compound deep neural net-
work architecture combining ResNets
and LSTM networks. Additionally,
transfer learning with high-resolution
RNA structures is employed to further
enhance prediction accuracy.

1.The first end-to-
end deep learning
model for RNA
secondary struc-
ture prediction.
2.Transfer learning
improves the perfor-
mance of the model.
3.Can predict the
base pairs related to
tertiary interactions,
including pseu-
doknots, solitary
base pairs, and
non-classical base
pairs.

1.Due to data noise,
the precision of the
preliminary training
model is limited.
2.For RNA strands
longer than 500 nts,
the predictive per-
formance is insuffi-
cient.

https://

sparks-lab.org/

server/spot-rna/

Continued on next page
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Continued from previous page
Category Title ML Technique Brief Description Pros Cons Resource

Improved RNA secondary structure and
tertiary base-pairing prediction using evo-
lutionary profile, mutational coupling and
two-dimensional transfer learning, Singh
et al., 2021 [88]

Dilated convolutional
network, transfer
learning

One-hot encoding and LinearPartition
algorithm are used to generate single-
sequence-based features, and PSSM
and DCA are used to generate two
evolutionary-based features. Both fea-
tures are input into the dilated convolu-
tional network and use transfer learning
to improve performance.

Using evolution-
arily derived
sequence profiles
and mutation
coupling, the pre-
diction accuracy
is significantly
improved.

1.Limited to se-
quences less than
1000 nts. 2.De-
pends on homolo-
gous sequences and
artificial sequences.

https://

github.com/

jaswindersingh2/

SPOT-RNA2

UFold: fast and accurate RNA secondary
structure prediction with deep learning,
Fu et al., 2022 [89]

FCN Views sequences as images and uses U-
Net to get the score matrix and applies
hard constraints post-processing to ob-
tain structures.

1.The network is
fully convolutional
with fast computing
speed. 2.Convert-
ing sequences into
”images” that ex-
plicitly model all
possible base pair-
ings between nu-
cleotides. 3.Uses U-
net which is capable
of handling images-
like data.

Data-dependent. https://github.

com/uci-cbcl/

UFold

RNA secondary structure prediction by
learning unrolled algorithms, Chen et al.,
2020 [90]

Compound deep neural
networks

Employs a transformer-based deep
model to encode the sequence informa-
tion, and then uses a multilayer network
to filter the output.

1.Being Able to pro-
cess longer RNA se-
quences. 2.Cap-
tures non-local in-
teractions in the se-
quence.

Severe overfitting
and limited general-
ization on unseen
RNAs.

https://github.

com/ml4bio/

e2efold

Machine learning a model for RNA struc-
ture prediction, Calonaci et al., 2020 [91]

CNN, MLP The network combines thermodynamic
parameters, chemical probing data
(DMS and SHAPE), and co-evolution
data to predict the secondary structure.

1.Multiple infor-
mation sources
improve the accu-
racy of structure
prediction. 2.Flexi-
ble architecture and
strong adaptabil-
ity. 3.Automated
training and opti-
mization.

1.High computa-
tional complexity.
2.Due to thermody-
namic parameters,
pseudoknots cannot
be predicted.

None

Continued on next page
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Hybrid
approach

RNA secondary structure prediction from
sequence alignments using a network of
k-nearest neighbor classifiers, Bindewald
et al., 2006 [42]

Hierarchical network
of k-nearest neighbor
model

Based on a hierarchical network of k-
nearest neighbor classifiers to predict
the shared RNA secondary structure by
RNA sequence alignment.

Combining ther-
modynamic in-
formation and
complementary in-
formation to predict
RNA secondary
structure, able to
predict pseudoknot
interactions.

1.Noise problem in
mutual information
and complementary
nucleotide fraction
matrix. 2.Model
performs poorly
with too high or
too low sequence
homology.

None

Developing parallel ant colonies filtered
by deep learned constraints for predict-
ing RNA secondary structure with pseu-
doknots, Quan et al., 2020 [94]

Bi-LSTM DpacoRNA uses a parallel ant colony
optimization algorithm to predict RNA
secondary structure. Additionally, uses
bidirectional LSTM recurrent neural net-
work to learn base pairing constraints
and optimize the final prediction results.

1. The effectiveness
of multi-objective
optimization design
and DL constraint
can predict the pseu-
doknot structure. 2.
SHOP parallel strat-
egy increases effi-
ciency.

1. The MCC value
still has room for
improvement. 2.
DL is loosely cou-
pled to pacoRNA
and is only ad-
justed during the
pacoRNA output
phase. 3. Depends
on the quality of the
objective function.

None

RNA Secondary Structure Prediction
Based on Long Short-Term Memory
Model, Wu et al., 2018 [92]

Bi-LSTM An LSTM-based method converting the
problem of predicting RNA secondary
structure into the problem of classifying
base pairs in sequences.

The complexity of
the prediction prob-
lem is simplified
and the computa-
tional efficiency is
improved.

LSTM network re-
quires a lot of com-
putation and takes a
long time to train.

None

Predicting RNA secondary structure via
adaptive deep recurrent neural networks
with energy-based filter, Lu et al.,
2019 [93]

Bi-LSTM The DL model automatically adapts to
sequence length and incorporates an
energy-based filter to remove overfitting
base pairs.

1.Solves the prob-
lem of sequence
length variabil-
ity. 2.Dynamic
weighting algo-
rithm to deal with
data imbalance.
3.Energy-based
filter to improve
accuracy.

The ability to gen-
eralize is not suffi-
ciently verified.

http://eie.usts.

edu.cn/prj/

AdaptiveLSTMRNA/

index.html

LTP Constraint: A Transfer Learning
Based End-to-End Method for RNA Sec-
ondary Structure Prediction, Fei et al.,
2022 [95]

Bi-LSTM, Transformer,
U-Net

Composed of a global semantic extrac-
tion module, local feature extraction
module, and filter network, applying
transfer learning to improve the predic-
tion accuracy.

Combines the ad-
vantages of each
substructure.

High training costs
and large demand
for high-quality
data.

https://github.

com/jluF/

LTPConstraint

Continued on next page
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RNA secondary structure prediction with
convolutional neural networks, Booy et
al., 2022 [99]

CNN Uses three-dimensional tensors to rep-
resent RNA sequences and convolu-
tional neural networks to predict two-
dimensional mappings of base pairing
relationships.

Consists only of
CNN model and
does not rely on any
other energy model.

Cannot apply to
data from com-
pletely new families
compared to the
training set.

https://github.com/
mehdi1902/RNA-
secondary-structure-
prediction-using-CNN

A New Method of RNA Secondary Struc-
ture Prediction Based on Convolutional
Neural Network and Dynamic Program-
ming, Zhang et al., 2019 [100]

CNN Utilizes the convolutional neural net-
work to learn the hidden features of RNA
structure and the dynamic programming
method to generate the optimal RNA sec-
ondary structure according to the pre-
dicted base pairing probability.

Novel combination
of CNN with DP im-
proves accuracy.

The issue of G-U
wobble pairing re-
mains, and pseudo-
knots cannot be pre-
dicted accurately.

None

DMfold: A Novel Method to Predict RNA
Secondary Structure with Pseudoknots
Based on Deep Learning and Improved
Base Pair Maximization Principle, Wang
et al., 2019 [? ]

Bi-LSTM Combining DL and IBPMP to predict
RNA structures with pseudoknots.

Takes full advan-
tage of the two main
methods.

The prediction accu-
racy of long RNA
sequences needs to
improve.

https://github.com/
linyuwangPHD/RNA-
Secondary-Structure-
Database

Improving RNA secondary structure pre-
diction via state inference with deep re-
current neural networks, Willmott et al.,
2020 [102]

Bi-LSTM Predicts RNA state through deep bidi-
rectional LSTM to generate synthetic
SHAPE data, and combines these data
into NNTM for prediction of RNA sec-
ondary structure.

Achieved signifi-
cant improvement
over undirected
NNTM.

Directed NNTM is
difficult to generate
high-precision MFE
structures for some
sequences.

https://github.

com/dwillmott/

rna-state-inf

REDfold: accurate RNA secondary struc-
ture prediction using residual encoder-
decoder network, Chen et al., 2023 [103]

CNN An encoder-decoder network based on
convolutional neural network (CNN) is
used to learn short and long-range de-
pendencies in RNA sequences, and the
network output is post-processed by con-
straint optimization.

1.Uses constrained
optimization in-
stead of DP to find
the best structure,so
the structures
predicted are not
limited to nested
folding structures.
2.Able to predict
RNA structures
with pseudoknots
efficiently and
accurately.

High data depen-
dence, long training
time, and vast com-
putational cost.

https://github.

com/aky3100/

REDfold
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