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Abstract: Lumbar spine diseases not only endanger patients' physical health but also bring about severe 
psychological impacts and generate substantial medical costs. Reliable lumbar spine image analysis is crucial for 
diagnosing and treating lumbar spine diseases. In recent years, deep learning has rapidly developed in computer 
vision and medical imaging, with an increasing number of researchers applying it to the field of lumbar spine 
imaging. This paper studies the current state of research in deep learning applications across various modalities of 
lumbar spine image analysis, including X-ray, CT, and MRI. We first review the public datasets available for 
various tasks involving lumbar spine images. Secondly, we study the different models used in various lumbar spine 
image modalities (X-ray, CT, and MRI) and their applications in different tasks (classification, detection, 
segmentation, and reconstruction). Finally, we discuss the challenges of using deep learning in lumbar spine image 
analysis and provide an outlook on research and development prospects. 

Keywords: deep learning; convolutional neural network; X-ray; computed tomography; magnetic resonance 
imaging 

1. Introduction

Lumbar spine disease is one of the leading causes of disability worldwide [1], which includes degenerative 
diseases, inflammatory conditions, trauma, and tumors [2]. Not only do lumbar spine diseases cause severe 
physical pain, such as varying degrees of leg pain, weakness, and back pain [3], but also inflict significant 
psychological and emotional impacts, such as anxiety, depression, and social isolation often experienced by those 
suffering from chronic pain [4]. Long-term pain may also lead to dependency on pain management strategies, such 
as the prolonged use of painkillers [5]. Furthermore, lumbar spine diseases are among the major causes of work 
absenteeism and workers' compensation claims, reducing labor participation and increasing medical and social 
security costs, thus imposing a significant economic burden on individuals and nations [6]. Therefore, it is 
important to effectively diagnose and treat lumbar spine disease. With the continuous development of medical 
imaging technologies, including X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), 
these imaging methods have become essential tools for diagnosis, treating, and prognosis prediction of lumbar 
spine diseases. Lumbar spine imaging provides valuable information about bones, joints, and surrounding soft 
tissues, helping doctors accurately diagnose spinal pathology [7]. Moreover, image-guided surgery, known for its 
precision and safety, is widely used in spinal surgical surgery [8]. Additionally, lumbar spine imaging also provides 
effective postoperative spinal assessments and care for healthcare providers [9]. Traditionally, lumbar spine 
images are visually observed and manually analyzed by radiologists based on their medical knowledge and 
experience. However, lumbar spine imaging still faces challenges such as limited contrast, insufficient spatial 
resolution, and artifacts [10–12]. Hence, accurate evaluation requires extensive knowledge and experience, and 
training such experts takes a considerable amount of time. 

To address these problems, researchers have proposed various methods to guide and assist doctors in lumbar 
spine image analysis. The commonly used techniques include digital image processing and machine learning 
methods, which often require manually designed feature extraction methods, making them time-consuming but 
also require expert knowledge [13]. Deep learning has achieved significant breakthroughs in computer vision, 
image processing, and analysis in recent years. Deep learning models allow for end-to-end training directly from 
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raw data to learn outputs, automatically extracting features from large datasets without manual design or selection [14]. 
Furthermore, deep learning models can use pre-training and fine-tuning techniques to perform transfer learning 
between different but related tasks, effectively addressing the problem of scarce annotated data [15]. Due to these 
advantages, deep learning has achieved excellent results in lumbar spine image analysis. 

Qu et al. [16] published a review on deep learning in spinal image analysis in 2022. They comprehensively 
introduced the application of deep learning in spinal image segmentation, detection and diagnosis. Lee et al. [17] 
published a review of deep learning for orthopedic diseases based on medical image analysis in 2022. They 
comprehensively introduced the application of deep learning in spinal image fractures, osteoarthritis, and joint-
specific soft tissue diseases. This paper distinguishes itself from other surveys by providing a comprehensive 
review of the application of deep learning in lumbar spine image analysis across multiple imaging modalities, 
including X-ray, CT, and MRI. Unlike previous reviews that often focus on a single modality or specific task, our 
paper systematically covers deep learning techniques across different modalities and tasks, such as classification, 
detection, segmentation, and reconstruction. We have reviewed standard deep learning models based on task types 
and compiled the datasets available from the referenced papers. Additionally, we have summarized deep learning 
applications across different tasks based on imaging modalities. We have also discussed the optimization 
techniques and challenges deep learning technology faces in lumbar spine image analysis. Table 1 describes the 
coverage of this lumber spine image research survey paper, including image modalities and deep learning tasks. 

Table 1. Lumber Spine Image Research Using Deep Learning. 

Image Modality Deep Learning Tasks 
X-Ray Classification, detection, segmentation 

CT Classification, detection, segmentation, registration, reconstruction 
MRI Classification, detection, segmentation, reconstruction 

Note: CT: computed tomography; MRI: magnetic resonance imaging. 

The structure of this paper is organized as follows. Section 2 introduces deep learning methods and public 
datasets. Section 3, 4, and 5 discuss the specific applications of deep learning in various task types across different 
imaging modalities. Section 6 discusses key optimization methods and challenges affecting existing deep learning 
methods in the field of lumbar spine image analysis. Section 7 summarizes the advantages and future prospects of 
deep learning in the field of lumbar spine imaging. 

2. Deep Learning Methods and Data

2.1. Classification Models 

In 1998, LeCun et al. [18] introduced the LeNet-5 model, which was successfully applied to handwritten 
digit recognition (MNIST dataset), marked a breakthrough in the practical application of Convolutional Neural 
Network (CNN). CNNs can automatically learn features with spatial hierarchy from images by stacking 
convolutional layers, pooling layers, and fully connected layers. This feature learning method fr om local to global 
enables CNNs to excel in image classification tasks. In 2012, AlexNet [19] achieved overwhelming success in the 
ImageNet large scale visual recognition challenge (ILSVRC). AlexNet utilized ReLU activation functions, dropout 
regularization, and GPU acceleration, significantly improving classification accuracy. ResNet [20] addressed the 
difficulty of deep network training by introducing residual learning. It allows network layers to fit a residual 
mapping directly, rather than the mapping itself, enabling the network to improve performance by increasing depth 
without gradient vanishing or exploding issues. Following ResNet, the deep learning community has continuously 
explored classification models, including deeper and more complex network architectures (such as DenseNet [21], 
EfficientNet [22]), the introduction of attention mechanisms (such as the application of Transformer [23] in image 
classification applications), as well as model design optimized for specific tasks or efficiency. 

2.2. Detection Models 

Detection models are mainly divided into two categories two-stage models and one-stage models. Two-stage 
models are characterized by first generating candidate regions, and then classifying these regions and regressing 
their bounding boxes. Region-based Convolutional Neural Network (RCNN) [24] initially extracts candidate 
regions through a selective search algorithm, then uses CNN to extract features and then classifies them through 
the SVM classifier. Fast RCNN [25] achieved the sharing of feature extraction by introducing the region of interest 
(RoI) pooling layer. It inputs the entire image into a CNN to generate a feature map, and then extracts features for 
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each candidate region from this shared feature map for classification and regression. Faster RCNN [26] introduced 
the region proposal network (RPN) for automatically generating high-quality candidate regions, further improving 
detection speed and accuracy.  

One-stage models directly predict the category and location of objects on the image, omitting the generation 
step of candidate regions, and thus are usually generally faster. You only look once (YOLO) [27] treated the object 
detection task as a single regression problem, directly mapping from image pixels to bounding box coordinates 
and class probabilities. YOLOv2 [28] has made a number of improvements over YOLOv1, including the 
introduction of batch normalization, use of high-resolution classifiers for pre-training, and improved anchor 
mechanism. YOLOv3 [29] further improved the accuracy and speed of detection. It introduced multi-scale 
prediction and used a deep darknet as the feature extractor. Single Shot MultiBox Detector (SSD) [30] performed 
detection on feature maps of different scales, better-handling objects of various sizes.  

2.3. Segmentation Models 

Fully convolutional network (FCN) [31] was the first model to apply deep learning to semantic segmentation 
successfully. It transformed the fully connected layers in traditional convolutional neural networks into 
convolutional layers, enabling the network to accept input images of any size and output segmentation maps of 
corresponding dimensions. FCN is trained end-to-end, significantly improving the accuracy and efficiency of 
segmentation tasks. U-Net [32], by introducing skip connections, fuses feature maps from the encoder 
(downsampling) phase with those from the decoder (upsampling) phase, thereby preserving more contextual 
information. This design enables U-Net to perform exceptionally well on small sample datasets, especially in 
medical image segmentation. SegNet [33] uses pooling indices from the encoder phase for upsampling in the 
decoder phase, reducing the model's parameter count while improving segmentation accuracy. DeepLabv1 [34] 
introduced atrous convolution, which increases the receptive field size without adding parameters, enhancing 
segmentation precision. Building on v1, DeepLabv2 [35] introduced atrous spatial pyramid pooling (ASPP), 
further improving the model's ability to segment objects of different scales.  

2.4. Evaluation Metrics 

Evaluation metrics in deep learning are standards used to measure the performance of deep learning models, 
aiding in understanding how models perform on specific tasks. Different metrics are employed across various tasks 
and application scenarios to comprehensively represent a model's performance, enabling a more thorough 
comparison between models [36]. Typically, evaluation metrics can be defined using a confusion matrix, where 
true positive (TP) represents the number of samples correctly predicted as positive, false positive (FP) represents 
the number of samples incorrectly predicted as positive, true negative (TN) represents the number of samples 
correctly predicted as negative, and false negative (FN) represents the number of samples incorrectly predicted as 
negative. 

Accuracy represents the proportion of samples that are correctly predicted by the model out of the total 
samples. It is the most fundamental metric for assessing model performance in balanced class situations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃   𝑇𝑁

𝑇𝑃   𝑇𝑁   𝐹𝑃   𝐹𝑁

Precision represents the proportion of actual positives among all samples predicted as positive by the model. 
A high precision means fewer false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
𝑇𝑃

𝑇𝑃   𝐹𝑃

Recall represents the proportion of samples predicted as positive by the model among all actual positives. A 
high recall means fewer false negatives. Recall is also known as sensitivity. 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
𝑇𝑃

𝑇𝑃   𝐹𝑁

F1-Score is the harmonic mean of precision and recall, used when both precision and recall are considered. 
The F1 score provides a single metric that balances precision and recall, also known as DSC (Dice Similarity 
Coefficient). 

𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ  
2𝑇𝑃

2𝑇𝑃   𝐹𝑃   𝐹𝑁 
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Average precision (AP) is mainly used to evaluate the performance of models in classification and object 
detection tasks. In object detection, it specifically measures the precision performance of a model at different recall 
levels. The Precision-Recall Curve is drawn by calculating the model's precision and recall at different threshold 
settings. A high AP value indicates the model can detect positive objects with high precision while maintaining a 
high recall rate. AP is calculated for each class, and the average of all class AP values, known as mean average 
precision (mAP), indicates overall model performance. 

Mean intersection over union (mIoU) is a common metric for evaluating model performance in image 
segmentation tasks. It calculates the average ratio of the intersection to the union of the predicted segmentation 
area and the actual segmentation area. Specifically, for a single class, IoU is calculated as follows. 

𝐼𝑜𝑈 ൌ   
𝑇𝑃

𝑇𝑃   𝐹𝑃   𝐹𝑁

After calculating IoU for all classes, mIoU is the average of these IoU values. This metric provides a way to 
quantify model accuracy in segmenting different classes. A higher mIoU value indicates better segmentation 
performance of the model. 

Table 2 summarizes the evaluation metrics for deep learning models. 

Table 2. Evaluation Metrics for Deep Learning Models. 

Metric Description Formula Application Tasks

Accuracy Proportion of correctly predicted samples 
among the total samples 

𝑇𝑃   𝑇𝑁
𝑇𝑃   𝑇𝑁   𝐹𝑃   𝐹𝑁

Classification, 
Detection 

Precision Proportion of true positives among all samples 
predicted as positive 

𝑇𝑃
𝑇𝑃   𝐹𝑃

Classification, 
Detection 

Recall (Sensitivity) Proportion of true positives among all actual 
positives 

𝑇𝑃
𝑇𝑃   𝐹𝑁

Classification, 
Detection 

F1-Score Harmonic mean of precision and recall 
2𝑇𝑃

2𝑇𝑃   𝐹𝑃   𝐹𝑁
Classification, 

Detection 

Average Precision (AP) Average precision values at different recall 
levels 

Calculated from the Precision-Recall 
Curve Detection 

Mean Average Precision 
(mAP) Mean of AP values across all classes Average of AP values for all classes Detection 

Intersection over Union 
(IoU) 

Ratio of the overlap between predicted and 
actual segmentation areas to their union 

𝑇𝑃
𝑇𝑃   𝐹𝑃   𝐹𝑁

Segmentation 

Dice Similarity 
Coefficient (DSC) 

Measure of overlap between the predicted and 
actual segments 

2 ∗  𝑇𝑃
2 ∗  𝑇𝑃   𝐹𝑃   𝐹𝑁

Segmentation 

Note: TP: true positive; TN: true negative; FP: false positive; FN: false negative. 

2.5. Data 

Data is crucial for deep learning models. Deep learning models rely on large data for training and validation. 
They learn features from the datasets through multi-level feature extraction to further enhance their generalizability 
and robustness, thereby enabling effective classification and prediction [37]. Conversely, when datasets are 
insufficient, models may only learn specific data features, leading to overfitting [38].  

In the medical field, it is difficult to collect high-quality datasets. First, medical data involves patients’ health 
information, which is subject to strict privacy protections and legal regulations, and current healthcare systems are 
yet to have the capability to provide the necessary protection for patient privacy [39]. Secondly, there are 
limitations in the cost and resources of collecting and processing medical data. Typically, experienced doctors are 
needed to analyze and annotate the data, and annotating large datasets also incurs a significant time cost [40]. 
Additionally, collecting sufficient data for rare diseases is challenging due to the scarcity of cases [41]. 

To develop deep learning applications in the field of lumbar spine images, it is imperative to construct public 
datasets. Public datasets can, to some extent, compensate for the lack of data in private datasets, while improving 
the generalizability and robustness of models. Moreover, they provide a fair comparison of the performance of 
models trained on different datasets. Additionally, even images of the same type but different parts can assist 
model training through transfer learning. Al-kubaisi et al. [42] used MRI images of brain tumors to train a VGG 
model from scratch and used the transferred weights for training a classification task on lumbar MRI images. The 
results showed further improvement in model performance.  
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Table 3 shows the public datasets collected in the papers we reviewed. The Lumbar Spine MRI Dataset [43] 
is the most used dataset among the papers reviewed, with Masood et al. [44] using it for MRI image vertebral 
segmentation tasks, Liawrungrueang et al. [45] for MRI image disc detection tasks, and Le Van et al. [46] for 
simulating X-ray data for image classification tasks. Spineweb [47] is an online collaborative platform that 
includes 16 spine image datasets for various modalities and tasks. Scoliosis Test Dataset [48] is MICCAI 2019 
Challenge dataset containing 98 X-ray images of the spine. VerSe2020 [49], VerSe2019 [50], xVertSeg Challenge [51] 
are CT spine image datasets from different challenges, containing 300, 160, and 25 images, respectively. BUU 
Spine Dataset [52] is a Burapha University dataset containing 400 labeled X-ray images of the spine. 

Table 3. Lumbar Datasets. 

Dataset Image Type Size Labeled Citation 
Lumbar Spine MRI Dataset MRI 515 No [43] 

Scoliosis Test Dataset  X-ray 98 No [48] 
BUU Spine Dataset  X-ray 400 Yes [52] 

VerSe2020  CT 300 Yes [49] 
VerSe2019  CT 160 Yes [50] 

xVertSeg Challenge  CT 25 Yes [51] 
Spineweb  X-ray/ CT/MRI - - [47]

3. X-Ray

3.1. Classification 

Classification tasks based on deep learning are widely used in lumbar X-ray images and are used mainly for 
classifying various diseases, including spondylolisthesis, stenosis, osteoporosis, etc. Khare et al. [53] employed 
the DenseNet-201 model to predict vertebral slippage in the lumbar spine. In the preprocessing stage, they used 
contrast stretching to eliminate incorrect boundaries and adaptive histogram equalization to reduce the impact of 
image noise. In comparative experiments with four other models (LumbarNet, VGG19, AlexNet, and GoogleNet), 
the DenseNet-201 model achieved the highest classification accuracy. Varçin et al. [54] predicted lumbar 
spondylolisthesis through a deep learning system. The model first detected the L4, L5 vertebrae, and S1 sacrum 
using the YOLOv3 model, followed by the classification of lumbar spondylolisthesis through a fine-tuned 
MobileNet model. 

Multiclass prediction tasks are also applicable to lumbar X-ray imaging. Sugiura et al. [55] used AlexNet to 
measure the tangential incident X-ray angles of the intervertebral disc space (IDS). They constructed a deep 
learning model using neural network console (NNC) and performed data augmentation and automatic model 
parameter selection through NNC. The study results demonstrated the effectiveness of deep learning in 
automatically classifying lumbar spine X-ray deflection angles, reducing patient burden, and improving imaging 
process efficiency. Nissinen et al. [56] analyzed and predicted pathological features in lumbar spine X-ray images 
using deep learning techniques, including scoliosis, instability, and fractures. They employed various visualization 
techniques to qualitatively evaluate the model’s performance, including generating image heatmaps with gradient-
weighted class activation mapping, indicating shapes and textures extracted by the network using the vanilla 
gradient method, rendering feature maps of individual input samples, and generating artificial input samples to 
visualize specific layers and kernels using activation maximization. Zhang et al. [57] proposed a DCNN model for 
osteopenia and osteoporosis screening. The model includes two channels for processing anteroposterior and lateral 
films and classifies patients from three sets of views: anteroposterior, lateral, and anteroposterior-lateral. Results 
indicate that the model can be effectively applied to identify osteopenia and osteoporosis in postmenopausal 
women. Table 4 summarizes the applications of deep learning models for classifying lumbar X-ray images. 

Table 4. Deep Learning (DL) in Classification of Lumbar X-ray Images. 

Target Class Dataset Size DL Model Performance (%) Paper 
List Accuracy Recall

Spondylolisthesis, and normal 299 VGG16 98 100 [58]
Anterior slippage, and normal 200 DenseNet-201 95.2 96.5 [53]

Stenosis, and normal 12442 VGG19 82.8 81.0 [59] 
Scoliosis, and normal 598 DenseNet 93.5 97 [46] 

Scoliosis, unreliability, and 
fracture 2949 CNN

94.1 (Scoliosis); 
82.4 (Unreliability); 

58.9 (Fracture) 

70.5 (Scoliosis) 
78.3 (Unreliability); 

60.0 (Fracture) 
[56] 

Note: VGG: visual geometry group; CNN: convolutional neural network; DCNN: deep convolutional neural network. 
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Target Class Dataset Size DL Model Performance (%) Paper 
List Accuracy Recall 

Osteoporosis, and normal 162 CNN 100 100 [60] 
Spondylolisthesis, and normal 272 GoogleLeNet 93.7 91.6 [61] 
Osteoporosis, osteopenia, and 

normal 1616 DCNN >72.6 (Osteoporosis) 
>78.7 (Osteopenia) 

>68.4 (Osteoporosis) 
>81.8 (Osteopenia) [57] 

Five classes of deflection angle 500 AlexNet 83.0 83.0 [55] 
Anteroposterior view, and 

Lateral view 1000 CNN 99.4 - [62]

Spondylolisthesis, and normal 2707 MobileNet 99 98 [54] 

3.2. Detection 

Detecting vertebrae in lumbar spine images allows for rapid and effective localization of the vertebrae, 
enabling further analysis of parameters or diseases. An et al. [63] designed a novel landmark detection network 
for detecting lumbar vertebrae. The network is divided into two parts: first, the centers of the lumbar vertebrae and 
sacrum are detected based on Pose-Net, followed by the detection of landmarks on the lumbar vertebrae and 
sacrum using M-Net. In the first part, they proposed a random spinal incision enhancement technique to improve 
detection robustness, and in the second part, they enhanced detection accuracy through CoordConv and partial 
affinity fields. Nguyen et al. [64] used a deep learning system to detect keypoints on vertebral angles to calculate 
specific angles between vertebrae. First, a VGG model was trained to predict keypoints. Since the model did not 
perform well in cases of severe slippage in extension and bending between adjacent vertebrae, a second CNN 
regression model was subsequently used to predict the left and right boundaries of the vertebrae and align them 
with the center predictions of the first model. Experimental results indicate that this method is effectively 
applicable for Meyerding classification. Zhou et al. [65] developed a deep learning-based model for detecting the 
L5 vertebra and S1 sacrum to measure lumbar-sacral anatomical parameters further. Based on the EfficientDet 
model structure, local keypoints localization was enhanced with skip connection modules, and heatmap regression 
was used instead of direct coordinate regression. 

In addition to vertebrae, automatic detection is also applicable to other lumbar spine structures. Sa et al. [66] 
automatically detected intervertebral discs based on Faster-RCNN. They conducted shallow and deep tuning of 
the model, specifically adjusting the last two and four layers, and evaluated the performance changes through 
smooth L1 Loss. Experimental results indicated that fine-tuning deeper layers of the model results in better 
detection performance. Table 5 summarizes the applications of deep learning models for detecting lumbar X-ray 
images. 

Table 5. Deep Learning in Detection of Lumbar X-ray Images. 

Target Class Dataset 
Size DL Model Performance (%) Paper List Accuracy AP 

Vertebrae 1524 Pose-net, M-Net 98.38 - [63]

Vertebrae 1000 SSD, MobileNet  95.6 (AP) 
93.5 (LA) - [62]

Vertebrae 100 CNN 99.7 - [67]
Vertebrae 1000 VGG, CNN - - [64]

Intervertebral discs 1082 Faster-RCNN - 90.5 [66]
L5 vertebra and S1 sacrum 1791 EfficientDet >90 - [65] 

L4, L5 vertebra and S1 sacrum 2707 YOLOv3 - - [54] 

Note: SSD: single shot multiBox detector. 

3.3. Segmentation 

Automatic segmentation of the lumbar vertebrae can further assist doctors in accurately measuring structural 
parameters, or further predicting disease states, thus improving their work efficiency. Kim et al. [68] combined 
deep learning techniques and level set methods to segment the lumbar vertebrae. First, the five lumbar vertebrae 
were located using Pose-net, followed by segmentation of the located vertebrae through M-net. The level set 
method was used for fine-tuning the results segmented by M-net. Trinh et al. [69] designed the LumbarNet model 
for segmenting the lumbar vertebrae and sacrum. Based on the U-net structure, they added a feature fusion module 
(FFM) to the encoder module to enhance the encoder's efficiency. After obtaining the segmentation results, they 
calculated the P-grade of the vertebrae based on pedicle slope detection (PSD) and dynamic shift (DS) to determine 
the presence of lumbar spondylolisthesis. 
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For more complex structural analysis requirements, Chen et al. [70] used the scSE U-net model to segment 
various anatomical features of the lumbar spine, such as the lumbar vertebrae, pelvis, spinous processes, and 
intervertebral foramina. This model implements spatial and channel squeeze & excitation (scSE) blocks in the U-
net structure, which recalibrate the feature maps along spatial and channel dimensions, respectively. The model 
includes two U-shaped networks, the first for segmenting anatomical features and the second for identifying them. 
Tran et al. [71] designed MBNet for lumbar spine segmentation and prediction of related parameters. This model 
includes two branches. The first branch performs semantic segmentation of the vertebrae using BiLuNet, which is 
based on an improved U-Net, and the second branch calculates relevant parameters based on the segmentation 
results to assist doctors in diagnosing low back pain. Table 6 summarizes the applications of deep learning models 
for the segmentation of lumbar X-ray images. 

Table 6. Deep Learning in Segmentation of Lumbar X-ray Images. 

Target Class Dataset Size DL Model Performance (%) Paper List mIoU DSC 

Multiple anatomical features of the lumbar spine 2782 U-net - 
91 (AP) 
87 (LA) 
80 (OP) 

[70] 

Vertebrae 797 Pose-net, M-Net - 91.6 [68]
Vertebrae 830 Comprehensive - - [72]

Vertebrae, sacrum, and femoral heads 750 U-net 85.0 - [71] 
Vertebrae, and sacrum 706 U-net 88 - [69] 
Vertebrae, and sacrum 780 U-Net - 82.1 [73] 

Vertebrae, sacrum, and femoral heads 1000 ResNet 88.5 - [74]
Vertebrae 2073 U-Net - >94 [75]

4. CT

Automatic classification for lumbar CT images is primarily used for gender classification and bone mineral 
density (BMD) prediction. Malatong et al. [76] applied a deep learning model to classify gender based on the upper 
and lower endplates of the L3 lumbar vertebra. They adjusted the last two layers of GoogLeNet, including 
modifying the parameters of the fully connected layer and replacing the new classification layer. Random rotations, 
reflections, and horizontal translations were employed during training to prevent model overfitting. Yasaka et al. [77] 
predicted lumbar spine BMD using deep learning techniques. They trained the model using the L2-L4 vertebrae 
of patients and tested it using the L1 vertebra. Finally, the BMD prediction results were used to assess whether 
patients had osteoporosis. 

Thoracic and lumbar spine injuries pose significant risks to human health. Automated vertebra detection can 
effectively locate the vertebrae and predict the damage and severity simultaneously. Doerr et al. [78] used the 
Faster R-CNN model to locate the lumbar spine, and simultaneously perform a five-category classification of 
thoracolumbar injury classification and severity score (TLICS) morphology types and binary classification of 
posterior ligamentous complex (PLC) integrity scores. They trained two models for the two respective localization 
and classification tasks. Research findings showed that deep learning methods effectively predict PLC and 
morphological components of TLICS. 

Accurate vertebrae segmentation from CT images is important for many tasks, including vertebral 
morphological analysis and disease prediction. Lu et al. [79] designed a deep learning-based 3D multi-scale spinal 
segmentation method. First, the lumbar spine was located and cropped using U-Net, followed by 3D vertebral 
segmentation using XUNet. XUNet incorporated inception blocks for feature extraction, aggregating features 
across different semantic scales and improving the network’s expressive ability. Malinda et al. [80] proposed a 
hybrid deep segmentation generative adversarial network for lumbar image segmentation. To increase data 
usability, they improved the training scheme on the CycleGAN model, combining paired and unpaired training 
data. 

Image-guided surgery is now widely applied in spinal surgery, and image registration allows surgeons to 
observe real-time changes during surgery better. Gao et al. [81] registered lumbar vertebrae using a deep learning 
model. They proposed an end-to-end framework named ACSGRegNet, which is mainly divided into two parts. 
The first is an affine registration network to calculate affine transformation parameters. The second is a deformable 
registration network, which includes self-attention modules, cross-attention modules, and gated fusion modules to 
output the final dense deformation field. 

Image reconstruction for CT images can reduce noise and improve image quality, obtaining high-quality CT 
images with reduced radiation doses, and enabling conversions between CT images and other image types. Greffier 
et al. [82] used both deep learning and hybrid iterative reconstruction algorithms for image reconstruction. Through 
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quantitative analysis of image quality and dose, it was verified that the deep learning reconstruction algorithm can 
optimize the CT dose plan. Morbée et al. [83] reconstructed CT images from MRI images based on deep learning 
methods and compared them with traditional CT images, demonstrating their equivalence. Yeoh et al. [84] applied 
a deep learning reconstruction algorithm to low-dose CT images. The experimental results from the quantitative 
and qualitative analysis showed that this method could achieve both image denoising and edge-sharpening effects. 
Table 7 summarizes the applications of deep learning models for lumbar CT images. 

Table 7. Deep Learning for Lumbar CT Images. 

Task Target Class Dataset Size DL Model Performance (%) Paper List 

Classification  
Female, and male 1100 GoogLeNet Accuracy = 92.5 [76] 
Female, and male 117 LeNet5 Accuracy = 86.4 [85] 

BMD 1665 CNN PCCs  > 84.0 ( p  < 0.001) [77] 

Detection Vertebrae 111 Faster R-
CNN DSC = 92 (morphology), 88 (PLC) [78] 

Segmentation 

Vertebrae 522 CNN DSC > 90 [86] 
Bone, disc, and nerve 1681 U-net DSC = 94 (Bone), 92 (Disc), 92 (Nerve) [87] 

Vertebrae 656 U-net DSC > 88.8 [79] 
Vertebrae 8040 CycleGAN DSC = 94.2 [80] 
Vertebrae 15 FCN DSC = 95.77 [88] 

Registration Vertebrae 61 CNN DSC = 96.3 [81] 

Reconstruction 

Vertebrae 3 Integrated Noise magnitude < i4 [82] 
Vertebrae 30  Integrated Quantitative image noise analysis [89] 
Full image 30 Integrated Bland Altman analysis [83] 
Vertebrae 52 Integrated Quantitative image noise analysis [84] 

Note: FCN: fully convolutional network. 

5. MRI

5.1. Classification 

Spinal stenosis and disc herniation are among the causes of lower back pain (LBP) and are two of the most 
common lumbar disorders. This task is typically performed by radiologists or orthopedic doctors through imaging 
analysis. Al-kubaisi et al. [42] used a deep learning model to classify lumbar disc status as normal or abnormal. 
They analyzed the impact of transfer learning and model fine-tuning on image classification through comparative 
experiments, including training with ImageNet images and brain tumor MRI images, and incorporated Grad-CAM 
visualization technique to explain the model. Experimental results showed that transfer learning using datasets 
from the same field could improve model performance and mitigate the effects of dataset limitations. 

Grading specific diseases is also a typical application of deep learning in lumbar MRI images. Chen et al. [90] 
designed an auxiliary diagnostic system for lumbar disc herniation (LDH) based on the CDCGAN model, capable 
of outputting six indicators for quantitative analysis of MRI images. In the model, they combined Tanh and ReLU 
activation functions to enhance the model's classification efficiency. Cheung et al. [91] assessed lumbar disc 
degeneration using a deep learning model. They employed the integrated MRI-SegFlow and visual geometry 
group-medium (VGG-M) to predict Schneiderman scores, disc bulging, and Pfirrmann grading. Experimental 
results demonstrated that deep learning models could be effectively applied in lumbar disc degeneration (LDD) 
prediction tasks. Table 8 summarizes the applications of deep learning models for classifying lumbar MRI images. 

Table 8. Deep Learning in Classification of Lumbar MRI Images. 

Target Class Dataset Size DL Model Performance (%) Paper List Accuracy Recall 
Normal, and abnormal 1448 VGG 87.91 > 90.91 [42] 

Six indexes of lumbar disc herniation - CDCGAN - - [90]
Four classes of Schneiderman score; disc 

bulging, and normal; Five classes of Pfirrmann 
grade 

2686 CNN 
90.2 (Schneiderman) 
90.4 (Disc bulging) 

89.9 (Pfirrmann) 

96.0 (Schneiderman) 
76.5 (Disc bulging) 

60.4 (Pfirrmann) 
[91] 

Five classes of Pfirrmann grade 2500 CNN 86 - [92] 
Five classes of Pfirrmann grade; four classes of 
spondylolisthesis; four classes of central canal 

stenosis 
882 SpineNet - - [93]

Three classes of foraminal stenosis 
severity 22796 ResNet >80 - [93]

Note: CDCGAN: conditional deep convolutional generative adversarial network. 
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5.2. Detection 

Vertebral detection tasks include center localization and candidate bounding box localization. Deep learning-
based vertebral image detection can provide doctors with effective localization of vertebral segments or disease 
areas. Zhou et al. [94] designed a deep learning method to detect and locate the L1-S1 lumbar vertebrae. The 
proposed method includes two phases of image detection: the first detects the S1 vertebra, and the second detects 
the L1-L5 vertebrae. The detection model is trained only on public datasets and does not require annotated MRI 
images as a training set. Compared to other deep learning methods, this model learns the similarities between 
vertebrae. Mushtaq et al. [95] combined the YOLOv5 and HED U-Net models to detect and diagnose the lumbar 
spine. First, YOLOv5 is used to detect the vertebrae, then L1, L5, and S1 are extracted from the detection results 
to calculate the lumbar lordosis angle (LLA) using L1 and S1, and the lumbosacral angle (LSA) using L5 and S1. 

To detect more vertebral structures, effective diagnosis of diseases should be pursued, including lumbar disc 
herniation and intervertebral disc degeneration. Tsai et al. [96] used deep learning to detect lumbar disc herniation. 
Due to a small training set size, they used data augmentation methods such as rotation, contrast, and brightness 
adjustments and employed multiple strategies to expand the volume and features of images. The model can detect 
abnormalities in the lumbar, sacral, and fifth lumbar vertebral regions. Yi et al. [97] used deep learning models to 
detect degenerative cervical diseases. They trained two modified 3D Resnet18 networks, one for sagittal view MR 
images and the other for axial view MR images. A multi-modal cross-attention module from Transformer was 
introduced in the models, and AdamW was used as the optimizer. Table 9 summarizes the applications of deep 
learning models for detecting lumbar MRI images. 

Table 9. Deep Learning in Detection of Lumbar MRI Images. 

Target Class Dataset Size DL Model Performance (%) Paper List Accuracy Precision mAP 
Vertebrae 903 CNN >99.3 >99.6 - [98]

Disc 1000 YOLOv5 95 - - [45]
Vertebrae, sacrum, disc 714 YOLOv3 81.1 87.2 - [96]

Vertebrae, disc 804 Resnet18 - >73.7 - [97]
Disc 80 Faster RCNN 96.25 - - [99]

Vertebrae 2739 CNN 98.6 98.9 - [94]
Vertebrae 575 YOLOv5 - - 95.2 [95]

5.3. Segmentation 

Automatic segmentation of MRI lumbar spine images can help doctors more accurately identify the different 
structures of the lumbar spine, while also helping doctors reduce diagnosis time and improve diagnosis efficiency. 
Li et al. [100] used deep learning methods to segment the spine in MRI images, including vertebrae, laminae, and 
the dural sac. They introduced a multi-scale attention mechanism based on the U-Net model, where the upsampling 
and downsampling convolutional layer structures were replaced with a convolutional layer and a dual-branch 
multi-scale attention module, enhancing the model's segmentation efficiency. Masood et al. [44] designed a deep 
learning model to segment vertebrae in images to further assess spinal spondylolisthesis and lumbar lordosis. They 
customized an algorithm (VBSeg) in the machine learning field for comparison with deep learning methods, and 
combined various models in the deep learning approach to configure the encoder-decoder setup for optimal results. 
Zheng et al. [101] used a deep learning model to segment specific structures according to the Pfirrmann grading, 
covering 5 types across 14 regions. The proposed BianqueNet architecture, built on DeepLabv3+, incorporated a 
swin Transformer with skip connection modules. Compared to traditional Transformer modules, this module uses 
a moving window mechanism, which is more efficient in network computation. 

For 3D segmentation of MRI images, Chen et al. [102] used a 3D-UNet model to segment the L4-5 spinal 
structures to reconstruct a 3D lumbar intervertebral foramen (LIVF) model. After obtaining the measurement 
results, further calculations were made on the morphological parameters of the LIVF, including the foramen area, 
height, and width. Experimental results showed that the model could be effectively applied to MRI spinal structure 
tasks, and based on the segmentation results, it could generate complete and accurate 3D LIVF models. Table 10 
summarizes the applications of deep learning models for segmenting lumbar MRI images. 
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Table 10. Deep Learning in Segmentation of Lumbar MRI Images. 

Target Class Dataset Size DL Model Performance (%) Paper List MIoU DSC 

Vertebrae, and discs 300 U-Net 94.7 (Vertebrae) 
92.6 (Discs) - [103]

Vertebral body, lamina, and dural sac 1080 CNN - 92.52 [100] 
Vertebrae, and sacrum 22796 U-Net - 93 [104] 

Vertebrae 514 ResNet, UNet 86 97 [44]
Discs 382 VGG 16 93.3 - [105]

Vertebrae, sacrum, presacral fat area, 
cerebrospinal fluid area and IVDs >1000 DeepLabv3+ 90.35 94.70 [101]

Vertebrae 1360 U-Net >74.4 >84.9 [106]
L4-5 spine structures 100 U-Net - 91.8 [102] 

L5/S1 bone structures, and discs 100 U-Net - >90.39 [107]

Note: MIoU: mean intersection over union; IVD: intervertebral disc; DSC: dice similarity coefficient. 

5.4. Reconstruction 

Deep learning techniques for MRI image reconstruction can accelerate imaging speed and enhance image 
quality. Chazen et al. [108] validated the effectiveness of image reconstruction from image evaluation and 
statistical analysis. In image evaluation, they graded overall image clarity on a 3-point scale, motion artifacts on a 
4-point scale, and used multi-planar reconstruction (MPR) to grade foraminal stenosis. Fujiwara et al. [109]
validated the effectiveness of rapid image reconstruction through statistical analysis, including Cohen’s kappa
statistic, and the interchangeability between the rapid reconstruction protocol and traditional protocols. Han et al. [110]
analyzed reconstructed images using deep learning quantitatively. They employed two convolutional neural
networks incorporating the 2D V-Net architecture; the first network segmented the intervertebral discs to calculate
disc height, while the second network segmented the vertebral bodies to calculate vertebral volume. To validate
their effectiveness, Zerunian et al. [111] performed noise analysis on reconstructed images. They measured signal
intensity to calculate signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and used a five-point Likert
scale to assess image quality for qualitative analysis. Gao et al. [112] trained a ResNet model to denoise MRI
images to remove Rician noise. They compared the model's denoising results with the weighted stable matching
(WSM) algorithm and denoising CNN (DnCNN) algorithm, verifying the model's reliability on MRI lumbar spine
images. Table 11 summarizes the applications of deep learning models for reconstructing lumbar MRI images.

Table 11. Deep Learning in Reconstruction of Lumbar MRI Images. 

DL Model/Software Patient Number Quantitative Analysis Indicators Paper List 
AIR Recon DL 35 Cohen’s kappa statistic [108] 

Advanced Intelligent Clear-IQ Engine 58 Cohen’s kappa statistic [109] 
AIR Recon DL 18 Disc heights and vertebral body volumes [110] 
AIR Recon DL 35 Conger's kappa statistic [113] 
AIR Recon DL 80 Quantitative image noise analysis [111] 

ResNet 127 Quantitative image noise analysis [112]

6. Discussions

From the papers reviewed, we can find that deep learning has been extensively used across various fields of 
lumbar spine image analysis, including the diversity of image modalities and the variety of processing methods, 
with some research results already reliably applied in clinical applications. Compared to traditional algorithms, 
deep learning stands out with its robust feature extraction capabilities, multi-level abstraction, and excellent 
flexibility and universality in image analysis tasks. A wide range of image preprocessing methods have significantly 
contributed, including data augmentation [54, 75, 96], and image quality enhancement [53]. Tsai et al. [96] employed 
image rotation and adjusted brightness and contrast to enhance MRI images, achieving an 86.2% accuracy in LHD 
detection with just 350 original images. Transfer learning offers another effective way to enhance performance by 
using pre-trained models on other datasets as a starting point and further fine-tuning them to align closely with 
specific task requirements, thus addressing tasks with fewer samples. In Al-kubaisi et al.’s research [42], the fine-
tuned VGG16 model's classification performance on an MRI dataset increased from 78.2% to 87.91%. 
Additionally, appropriate modifying network structures [70,100,101], improving activation functions [90,97], and 
post-processing of model results [68,75] can all effectively enhance the overall performance of tasks. 

Different deep learning models exhibit various strengths and weaknesses across different imaging modalities 
and tasks. CNNs, such as LeNet, AlexNet, VGG, and ResNet, are widely used in classification, detection, and 
segmentation tasks for X-ray, CT, and MRI images due to their powerful feature extraction capabilities, although 
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they require significant computational resources. R-CNNs and its variants excel in object detection tasks in CT 
and MRI images with high accuracy but at the cost of higher computational demands. Single-stage detectors like 
YOLO and SSD are favored for real-time applications in X-ray and CT images, offering faster detection speeds 
with slightly lower accuracy. FCN and U-Net are highly effective for segmentation tasks, particularly in MRI 
images, but depend heavily on high-quality annotated data. GANs are useful for data augmentation and image 
reconstruction, producing high-quality synthetic images, though their training can be unstable and complex to tune. 

Deep learning in lumbar spine image processing still faces shortcomings and challenges. First, compared to 
other body parts like the breast [114] and heart [115], lumbar spine images lack sufficient public datasets. Although 
data augmentation can somewhat mitigate this issu, there is still a gap between the training performance of models 
and their potential maximum performance. Therefore, establishing high-quality public datasets is necessary. 
Secondly, deep learning has poor generalization ability. Models trained solely on data from a single field often fail 
to generalize when applied to other fields [116], and lumbar spine images often show significant variation across 
different modalities or even within the same modality under different acquisition devices. With the continuous 
development of large-scale pre-trained models [117] in recent years, this issue might be addressed. Moreover, the 
substantial computational resources required for processing and analyzing lumbar images also hinder the 
widespread application of deep learning in practical settings. Although deep learning models have shown potential 
in diagnosing and predicting lumbar diseases, the ability to process large volumes of patient data in real-time, and 
the demand for computational resources by these models, remain practical challenges that need to be overcome. 
In some studies [54,62], the application of compact networks like MobileNet [118] has been able to mitigate the 
impact of these issues. 

With the advancement of data sharing and privacy protection technologies, public datasets of lumbar spine 
images are expected to become more abundant. This will help enhance the training effectiveness and 
generalizability of deep learning models. Additionally, developing techniques such as transfer learning and self-
supervised learning will further improve model performance in data-scarce situations. In clinical applications, deep 
learning is expected to further improve doctors' work efficiency and diagnostic accuracy by integrating with other 
technologies such as augmented reality (AR) and virtual reality (VR). For example, real-time image analysis based 
on deep learning can provide more precise guidance for surgical navigation, thereby increasing surgical success 
rates and reducing postoperative complications. Moreover, with the continuous improvement in the performance 
of computing devices, the inference speed and processing power of deep learning models will also be significantly 
enhanced. This will enable deep learning technologies to be more widely applied in real clinical settings, achieving 
real-time, accurate diagnosis and treatment of lumbar spine diseases. 

7. Conclusion

We have summarized the latest applications of deep learning in various modalities of lumbar spine imaging 
while also compiling a list of available public datasets and discussing common models used in different tasks. 
Deep learning has now become one of the mainstream directions in the field of lumbar spine image analysis. The 
rapid and accurate performance demonstrated by deep learning in image classification, detection, segmentation, 
and reconstruction can be reliably applied to the diagnosis, treatment, and prognosis of lumbar spine diseases, 
effectively enhancing doctors' work efficiency. Although some problems and challenges exist, with the future 
emphasis on privacy protection, the improvements in model interpretability and generalization abilities, as well as 
the continuous development of computing devices, deep learning is expected to become an important tool for 
managing spinal diseases. 
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